M\&M číslo 1 ročník VI

Milí kolegové !

Právě se vám dostalo do rukou první číslo šestého ročníku naší soutěže $M \& M$. Pokud se $\mathrm{M} \& \mathrm{M}$ setkáváte poprvé, pak si pozorně přečtěte následující řádky, na nichž se vám ve stručnosti pokusíme M\&M představit.

- $\mathrm{M} \& \mathrm{M}$ je matematicko-fyzikální soutěž, ve které si můžete prověřit svoje odborné znalosti, ale také projevit vlastní tvůrčí schopnosti a vynalézavost při řešení různých problémů. Pokud jste středoškoláci a matematika nebo fyzika vás poznamenala natolik, že se stala vaším koníčkem, máte tedy nyní jedinečnou šanci, jak vyplnit svůj volný čas bádáním nad problematikou vám blízkou a snad i vyhrát letošní ročník soutěže.
- $\mathrm{M} \& \mathrm{M}$ patří do rodiny takzvaných korespondenčních seminářů, kterých v České republice a na Slovensku existuje více než 10 . Řekněme tedy, v čem se náš seminář od této „konkurence" lisí.
(1) $M \& M$ je současně také vědecký časopis. Většina seminárò nabízí k řešení pouze jednoznačně zadané příklady. My každoročně otvíráme několik témat, ke kterým může kdokoli zaslat libovolný příspěvek (samozř̌ejmě se vztahem k dané problematice). Navíc nabízíme řešitelům možnost vymyslet a navrhnout svoje vlastní téma, se kterým by se chtěli na stránkách časopisu setkávat. Podmínkou je, že téma se musí týkat matematiky nebo fyziky a musí být zajímavé. Návrhy témat posuzuje naše redakční rada, která vybraná témata uveřejní.
(2) $\mathrm{M} \& \mathrm{M}$ se snaží hledat souvislosti mezi matematikou a fyzikou a občas i informatikou, nikoli však násilně. Ostatní korespondenční semináře jsou specializované budo na matematiku, nebo na fyziku. My nechceme mezi těmito obory lidského smýšlení stavět umělé hranice. Fyzika matematiku potřebuje a mnohý matematický problém zase pochopíme na názorném fyzikálním příkladě.
(3) Úlohy v $\mathrm{M} \& \mathrm{M}$ jsou rozloženy v širokém spektru složitosti. Každý si zde může vybrat, co ho baví a na co stačí - to platí o úlohách i o tématech. Z článků, které nám napíšete, se na naše stránky dostanou ty nejlepší a nejzajímavější.
- Jak M\&M probíhá?

M\&M se může zúčastnit každý středoškolák, který má dostatek chuti a času. Pokud se rozhodnete $\mathrm{M} \& \mathrm{M}$ řešit, budeme vám na vaši adresu časopis zasílat (samozřejmě zdarma). V časopise naleznete vždy zadání tří tzv. „rekreačních úloh" a občas zadání nových témat. „Rekreační úlohy" jsou příklady, které jdou obvyklé i v jiných seminárích - jsou jasně zadané a žádáme jejich jasné řešení. Vhodné jsou zvlášt́ pro dobu, kdy se rekreujete. Někdy mají podobu hádanek, jindy fyzikálních úvah apod. O tématech jsme již hovořili. Podaříli se vám vyřešit nějakou z úloh anebo zaujme-li vás některé z témat, můžete nám svá řešení a postřehy zaslat na adresu semináře, která je uvedena na konci tohoto letáku.
Řešení úloh posílejte do termínu, který pro každou sérii stanovíme. Pozdní odeslání řešení rekreačních úloh tolerujeme jen výjimečně. Rozhodující je přitom datum na poštovním razítku. Na řešení každé série budete mít asi měsíc času. My vaše řešení vyhodnotíme a
okomentujeme, nejlepší články k tématům otiskneme přímo v časopise. S novým číslem časopisu (ve kterém najdete též autorská řěění úloh) pak dostanete zpátky svá okomentovaná řě̌ení i vědecké příspěvky. Ročně hodláme vydat asi 5 čísel časopisu.

- $\mathrm{M} \& \mathrm{M}$ je, jak jsme již v úvodu zmínili, soutěží. Za každé řešení úlohy nebo příspěvek k tématu obdržíte několik bodů, jejichž množst ví bude určeno mírou správnosti vašeho řešení, originalitou a nápaditostí článku a brilantností vašich úvah... Správná řešení rekreačních úloh bývá zvykem hodnotit asi 5 body, přesný počet bodů budeme uvádět v zadání jednotlivých úloh. Dobré články k tématům se cení třeba i na 15 b . Dodejme, že nerozlišujeme bodování podle ročníku studia, jak to mnohé semináře činí. Volné pojetí témat totiž umožňuje zvítězit i nejmladším řešitelům, jsou-li dost aktivní. Na základě počtu bodů přiřazených jednotlivým řě̌itelům posléze sestavíme pořadí, které budeme průběžně otiskovat na poslední straně časopisu. V závěrečné sérii provedeme celkové vyhodnocení a odměníme vítěze zatím neznámými, ale jistě hodnotnými cenami.
Hovor̂́me-li o hodnocení, neopomeňme zdůraznit jednu zvláštnost, kterou má pouze $\mathrm{M} \& \mathrm{M}$. Po překročení určitých bodových limitů totiž získáte pro účely semináře titul, kterým jsou vás povinni ostatní účastníci oslovovat. Přislušné bodové limity jsou: 10b (bakalář), 20b (magistr), 50b (doktor), 100b (docent), 200b (profesor), 500b (akademik). Do limitu potřebného pro dosažení titulu se započítávají i body získané v předchozích ročnících semináře.
- Konference M\&M

Pro nejlepší řě̌itele organizujeme každoročně alespoň jednu konferenci. Letos budou dokonce konference dvě. V zimě se můžete těšit na oslavu příchodu roku 2000 - první konference totiž proběhne začátkem ledna na Studenově (to je v Krkonoších kousek od Harrachova). Druhá konference se bude konat pravděpodobně v červnu. Učastníky budeme vybírat podle průběžného pořadí. Počítejte s tím, že na zimní konferenci si budete muset připlatit zhruba $500 \mathrm{Kč}$.
Konference jsou dobrou př́ležitostí k seznámení s lidmi podobného smýšlení, pro mnohaleté řěitele pak vhodným místem, kde lze potkat staré známé. Na podobných akcích se pak vedou vědecké polemiky, můžete zde vyslechnout nebo též sami přednést řadu přednášek. Konference jsou pořádány v přírodě a jejich program není pouze odborný (provozují se tam rozmanité hry a podobně). Všichni, kdo na podobné akci někdy byli, mi dají za pravdu, že nelitovali.

- Pokud jste vydrželi číst až sem a M\&M vás zaujalo natolik, že jste se rozhodli je řešit, pak pro vás máme ještě pár drobných rad a podmínek soutěže:
(1) K řešení první série prosím přiložte lístek se jménem, ročníkem, adresou školy a vaší adresou pro korespondenci.
(2) Každou úlohu (téma) pište na zvláštní papír (různé úlohy obvykle opravují různí lidé). Každý papír označte svým jménem a číslem úlohy, popřípadě číslem listu. K náležitostem vědeckého článku patří jeho název a jméno autora. Nenazvete-li článek, vymyslíme pro ně̌j v případě otištění název sami. Redakce si vyhrazuje právo článek pro lepší srozumitelnost zestručnit nebo upravit, vždy však jen do té míry, aby nebyl změněn jeho smysl.
(3) Nemusíte posílat řešení všech úloh a témat. Vyberte si, co vás nejvíce zajímá. Ohodnotíme i náznaky řešení (samozřejmě, vděčnější budeme za řešení úplná).
(4) Nepište jenom výsledky, ale podrobně nám vysvětlete postup, jak jste k nim došli. Pokud nám pošlete pouze výsledek (byṫ správný), na mnoho bodů se netěšte.
(5) Pište prosím čitelně. Nad nečitelnými řešeními pak strávíme zbytečně mnoho času. Navíc je nemůžeme objektivně ohodnotit.
(6) Svá řešení nám můžete posílat na papiře (at už v rukopise nebo vytištěná počítačem), na disketě (preferujeme zdrojový text pro sázecí systém $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ nebo čistý ASCII-text) nebo přes Internet e-mailem na adresu
tbra7047@milada.troja.mff.cuni.cz
(7) Dodržujte termíny odesílání rekreačních úloh. Příspěvky k tématům můžete posílat po celý rok.
(8) Ve svých příspěvcích můžete reagovat na články svých kolegů. Budete-li používat výsledků práce někoho jiného, doporučujeme vám použité výsledky napsat formou citace.
(9) $\mathrm{M} \& \mathrm{M}$ můžete začít ř̌šit kdykoli v průběhu roku.
- Na závěr několik slov o historii M\&M. Coby korespondenční seminář pro Středočeský kraj bylo M\&M založeno již na sklonku roku 1994. Zakladateli byli Martin Vyšohlíd a Martin Čížek - oba studenti MFF UK. Současnými organizátory jsou další studenti Matematicko-fyzikální fakulty.

A ještě jedna prosba na úplný závěr. Máte-li možnost tento leták jakkoli rozšǐǐit na střední školy nebo třeba mezi své kamarády, o kterých víte, že se matematikou nebo fyzikou zabývají, pak vás prosíme, abyste tak učinili. Za každého prokazatelně získaného řešitele dostanete na soustředění tatranku.

Tot̛ vše, přejeme vám hodně štěstí a zábavy při práci. Na vaše příspěvky se těší Tomáš Brauner, Ivana Čapková, Pavol Bzučo Habuda, Aja Jančař̌iková, Matouš Jirák, Aleš Přivětivý, Robert Špalek a Karel Zikmund.

Zadání témat:

1. Elektrón

Medzi dve polonekonečné vodivé, uzemnené platne, ktoré zvierajú uhol α, vložíme elektrón (všeobecne náboj Q). Určite, za aký čas spadne tento náboj položený do stredu medzi platne na jednu z nich. Pre jednoduchost môžete uvažovat́, že $a \rightarrow 0$ alebo $a \rightarrow \pi / 2$. Za všeobecný prípad bude viac bodov.

2. Sportka
(12b)
Určitě všichni znáte hru sportka. Losuje se šest ze čtyřicetidevíti čísel a vylosovaná čísla se do osudí nevrací, takže se vylosovaná čísla nemohou opakovat. Na tuto hru se sází tak, že si na tiketu zaškrtáte šest čísel. Pokud uhodnete alespoň tři z vylosovaných, vyhráváte. Pokud uhodnete čtyři vyhráváte větší sumu atd. . . Vaším úkolem je zjistit nejmenší počet tiketů, které byste museli vsadit, a vhodně popsat, jak by takové tikety vypadali, aby jste měli jistotu, že alespoň na jednom tiketu uhodnete tři vylosovaná čísla. Není důležité nalézt nejlepší řešení, ale alespoň se k tomu číslu přiblî́žit. Uvědomte si, že stačí rozhodně méně než $\binom{49}{3}$. Dále můžete přemýšlet, jak by to vypadalo obecně, tj. pro jiná čísla než 49 a 6.
3. Gramatiky

V tomto tématu se budeme zabývat gramatikami. Začneme tedy definicemi:
Abeceda je libovolná neprázdná konečná množina. Prvky této množiny nazývejme symboly. Příkladem abecedy je například tzv. česká abeceda $A=\{a$, á, b, c, č, $d, \ldots\}$. Jiným příkladem mưže být abeceda číslic $B=\{0,1,2,3,4,5,6,7,8,9\}$. Ale za symboly můžeme brát i shluky písmen např. abeceda slov $C=\{$ doma, kůň, pít, voda, seno, žrát $\}$, tyto shluky pak uvažujeme dohromady a nedělíme je menší části.

Slovem nad abecedou X nazývejme konečnou posloupnost symboli̊ z_{η} abecedy X. Množinu všech slov konečné délky nad abecedou X označme X^{*}. Uvědommesi, že X^{*} obsahuje i prázdné slovo, tj. slovo tvořené prázdnou posloupností symbolů. Toto slovo budeme značit e. Slovy nad abecedou A jsou například slova e, abba, bbbba, čekat, atd... Slovy nad abecedou B jsou všechna konečná přirozená čísla a prázdné slovo - $0,34567,21,007$, atd... Slovy nad abecedou C jsou např. „kůň pít voda", „voda pít seno", „seno seno doma pít" atd...

Přepisovací pravidlo je uspořádaná dvojice (a, v) zpravidla psaná ve tvaru $a \rightarrow \boldsymbol{v}$, kde a i v jsou slova nějaké abecedy. Přepisovací pravidlo můžeme aplikovat na slova. Obsahuje-li v sobě slovo s podslovo a, tedy $s=x a z$, výsledkem aplikace přepisovacího pravidla $a \rightarrow v$ na slovo s je slovo $x v z$. Přepisovací pravidlo tedy ve slovech nahrazuje podslovo a slovem v. Uvědomme si, že v případě, že se ve slově s vyskytuje vícekrát podslovo a, není jednoznačné, které podslovo se nahradí. Přepisovací pravidlo tedy není funkce, ale zobrazení. Pár příkladů: Uvažujme slova abecedou A a přepisovací pravidlo á $\rightarrow a$. Výsledkem trojnásobné aplikace tohoto pravidla na slovo „propánájána" bude slovo „propanajana". Pro slovo nad abecedou C „kůň žrát seno doma" použitím přepisovacího pravidla „žrát seno" \rightarrow „žrát seno pít voda" bude výsledek „kůň žrát seno pít voda doma". Fakt, že se slovo a přepíše konečným počtem použití pravidel z dané množiny a vznikne slovo b, značíme $a \vdash b$.

Bezkontextová gramatika je uspořádaná čtveřice $G=(N, T, P, S)$, kde

- N je abeceda obsahující neterminální symboly,
- T je abeceda obsahující terminální symboly,
- P je množina přepisovacích pravidel tvaru $a \rightarrow b$, kde $a \in N$ a $b \in(N \cup T)^{*}$, tj. a je neterminální symbol a b je slovo nad sjednocením množin N a T,
- S je počáteční symbol z množiny neterminálních symbolů.

Konečná posloupnost slov nad abecedou $N \cup T a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$ je generujíci posloupností slova a_{n}, jestliže $a_{0}=S$ a pro každé $1 \leq i \leq n$ existuje přepisovací pravidlo z P, že a_{i-1} se přepíše pomocí onoho pravidla na a_{i}. Gramatika generuje slovo s, pokud pro ně̌j existuje generující posloupnost. Množina všech slov generovaných gramatikou obsahujících pouze terminální symboly G se nazývá jazyk gramatiky G.
Příklad.

- $G=(N, T, P, S)$,
- $N=\{$ SOUVĚTÍ, VĚTA, PODMĚT, PŘÍSUDEK, CO $\}$,
- $T=\{$ petr, tomáš, pije, mlíko, a, pivo $\}$,
- $P=\{$

SOUVĚTÍ \rightarrow VĚTA,
SOUVĚTÍ \rightarrow VĚTA a SOUVĚTÍ,
VĚTA \rightarrow PODMĚT PŘÍSUDEK CO,
PODMĚT \rightarrow tomáś,
PODMĚT \rightarrow petr,
PŘÍSUDEK \rightarrow pije,
$\mathrm{CO} \rightarrow$ pivo,
$\mathrm{CO} \rightarrow$ mlíko
\},

- $S=$ SOUVĚTí.

Jazyk této gramatiky generuje jednoduchá souvětí obsahující slova pouze z „naší velmi omezené množiny - např: „petr pije mlíko", „tomás pije pivo a petr pije mlíko". Jednoduše řečeno, začneme s neterminálním symbolem S a ten přepíšeme podle ně̌jakého
pravidla. Ve vzniklém slovu přepíšeme všechny neterminály podle pravidel a tak pokračujeme dál tak dlouho, dokud nevznikne slovo složené jen z termináli̊. To pak patří do jazyka generovaného gramatikou G. Pokud neterminál lze přepsat na více slov, můžeme si vybrat, na které chceme (viz. neterminál SOUVĚTI).

Příklad.

Jazyk obsahující všechna slova tvaru $0^{n} 1^{n}$ (n nul následovaných n jedničkami), generuje gramatika:

- $N=\{A\}$,
- $T=\{0,1\}$,
- $P=\{A \rightarrow 0 A 1, A \rightarrow e\}$,
- $S=A$.
$V_{\text {, }}$ tomto čísle po Vás budeme chtít pouze, abyste pronikli do této terminologie a vyřešili pár lehkých příkladů, zajímavěǰ̌í příklady přijdou v příším čísle:
(a) Napište gramatiku, která generuje všechny smysluplné matematické výrazy obsahující přirozená čísla, závorky a základní operace.
(b) Napište gramatiku, která generuje všechna binární čísla dělitelná třemi.
(c) Napište gramatiku, která generuje všechna slova nad abecedou $\{a, b, c\}$ mající sudou délku a jejichž druhá polovina je zrcadlově obrácená první polovina, napy̌: abccba, aaaa, bbaaaabb, atd...

Zadání rekreačních úloh:

1. Dve gulồčky

Predstavte si, že vo vesmíre sa nachádzajú iba dve malé kovové gulôčcky. Na každú nanesieme jeden elektrón. Aký je polomer gulồcok, ak sú v rovnováhe, prítažlivá a odpudivá sila sa vyrovnali.
2. Trojúhelník

Máme rovnostranný trojúhelník a uvnitř něj zvolíme libovolně bod. Tento bod spojíme se všemi vrcholy trojúhelníku a spustíme z něj kolmice na všechny jeho strany, čímž vznikne šest malých trojúhelníčků (viz obr.). Dokažte, že součet obsahů vyšrafovaných trojúhelničkù je roven polovině obsahu celého trojúhelníku.

3. Eliptický kulečník

Představte si, že máte kulečníkový stůl tvaru elipsy. V jednom ohnisku elipsy je koule, kterou chcete trefit. Kam musíte postavit kouli, kterou se budete trefovat, abyste měli jistotu zásahu? Tření zanedbejte.
Pro nechápavé: ukažte, že elipsa (definovaná standardně jako množina všech bodů, jejichž součet vzdáleností od pevně zvolených dvou bodů je konstanta) má tuto vlastnost: když vyšleme z jednoho ohniska kouli (světelný paprsek, zvuk), odrazí se ve shodě se zákonem odrazu do druhého ohniska.
4. Odpor vzduchu

Představte si, že vezmete kámen a vyhodíte jej v tíhovém poli Země svisle vzhůru. Na kámen působí kromě tíhové síly také odpor vzduchu. My po vás chceme porovnat obecně dobu výstupu kamene do nejvyšsího bodu jeho dráhy s dobou jeho pádu zpět (rovnají se, jedna doba je delší než druhá, nebo to závisí na tvaru odporové síly).

Tomáś Brauner, A1721
VŠK 17. listopadu
Pátkova 3
18200 Praha Holešovice

