M\&M Číslo 4 ročník V

Abstract

Ahojte řešitelé, Právě vychází další číslo Vašeho oblíbeného korespondenčního semináře. Protože se bliží soustředění, bylo by dobré Vám připomenout několik důležitých bodů.

V ýňatek ze zápisu ze zasedání Akademickẻ rady našeho semináře: Soustředění se bude konat ve dnech 13.-19. června v Dědově pod Ostašem. Všem, kdo pošlou přihlášku do 9 . května, budou zaslány podrobnější informace. Ubytování bude zajištěno v malebné chaloupce, přesto předem upozorňujeme, že pro Vaše lepší pohodlí je nutno si vzít s sebou spacák. Strava bude podle standardu $\mathrm{M} \& \mathrm{M}$. Cena za soustředění bude $200 \mathrm{Kč}$. . Vzhledem k velkému zájmu na soustředění pojedou pouze aktivní ř řǐitelé semináře (tj. ti, kteří poslali alespoň jeden příklad). Už se na Vás těěíme

Vaše redakce

Téma 2 - Lupa

Dr. Michal Tarana: Sluneční pec
Je to zařízení umožňující soustředit sluneční energii pomocí parabolických zrcadel nebo čoček do ohniska, ve kterém se dosahují teploty až několik tisíc stupňů Celsia. Protože zrcadla jsou technicky méně náročná a levněǰ̌í, používají se ve všech zařízeních tohoto typu. Tyto pece slouží na tavení těžko tavitelných kovů a na endotermické reakce, při kterých je potřeba vysoká teplota.

Jedna z nejznáměǰších slunečních pecí je v Pyrenejích. Sběrač je zrcadlo složené z mnoha malých zrcadel, která jsou automaticky řízena pomocí fotobuněk a počítače. Pracovní plocha je asi $0.25 \mathrm{~m}^{2}$. Její výkon je asi 1000 kW .

Plánuje se vybudování slunečních pecí na Měsíci, např. na zahřívání hornin a získávání krystalické vody.

Téma 4 - Diferenční rovnice

Lineární diferenční rovnici s konstantními koeficienty nazývejme rovnici tvaru

$$
A_{n} p^{(n)}+A_{n-1} p^{(n-1)}+\ldots+A_{1} p^{\prime}+A_{0} p=\dot{C}
$$

kde A_{i} jsou konstanty. Pro jednoduchost budeme brát pravou stranu konstantní.

Doc. Zdeněk Dvořák, Dr. Michal Tarana: Diference vyšších řádů
Lemma 1. Označme $p^{(n)}$ jako n-tou diferenci posloupnosti p. Pak platí

$$
p^{(n)}=\left[\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} p_{i+j}\right]_{i} .
$$

Důkaz. Indukcí podle n:
I. Pro $n=1$ tvrzení platí, $p^{\prime}=\left[p_{i+1}-p_{i}\right]_{1}$.
II. Necht tvrzení platí pro $n-1$. Pak je
$p^{(n)}=\left[p_{i+1}^{n-1}-p_{i}^{n-1}\right]_{i}=\left[\sum_{j=0}^{n}\left\{\binom{n-1}{j-1}+\binom{n-1}{j}\right\}(-1)^{n-j} p_{i+j}\right]_{i}=\left[\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} p_{i+j}\right]_{i}$.

Pozorováni. Na základě tohoto lemmatu si nyní můžeme lineární diferenční rovnici vyjádřit ve tvaru

$$
\sum_{j=0}^{n} C_{j} p_{i+j}=C
$$

$k d e C_{j}$ jsou vypočítané konstanty právě podle tohoto lemmatu. Z tohoto vztahu již můžeme rekurentně vyjádřit všechna řešení zadané rovnice s tím, že členy $p_{1} \ldots p_{n}$ mohou být libovolné.

Doc. Zdeněk Dvořák: Řešení lineární diferenční rovnice s konstantními koeficienty

Lemma 2. Mějme s,a,n celá nezáporná čísla, $a<s$. Pak platí

$$
\sum_{j=0}^{s}(-1)^{j}\binom{s}{j}\binom{n+j}{a}=0 .
$$

Důkaz. indukcí podle n :
I. Pro $n=0$: Obě strany binomické věty

$$
(1+x)^{s}=\sum_{j=0}^{s}\binom{s}{j} x^{j}
$$

\boldsymbol{a}-krát zderivujeme podle x a za předpokladu $a<s$ dostaneme

$$
\frac{s!}{(s-a)!}(1+x)^{s-a}=\sum_{j=0}^{s} \frac{j!}{(j-a)!}\binom{s}{j} x^{j-a}
$$

Dosazením za $x=-1$ a úpravami dostáváme

$$
0=a!\sum_{j=0}^{s}(-1)^{j}\binom{j}{a}\binom{s}{j}
$$

z čehož plyne dokazované tvrzení pro $n=0$.
II. Nechte platí dokazované tvrzení pro $n-1$. Pak
$\sum_{j=0}^{s}(-1)^{j}\binom{s}{j}\binom{n+j}{a}=\sum_{j=0}^{s}(-1)^{j}\binom{s}{j}\binom{(n-1)+j}{a}+\sum_{j=0}^{s}(-1)^{j}\binom{s}{j}\binom{(n-1)+j}{a-1}$.
Vzhledem k tomu, že v obou členech zůstává zachována podmínka $a<s$, je tvrzení dokázáno.

Homogenní lineární diferenční rovnice ($\dot{C}=0$)

Předpokládejme řešení tvaru geometrické posloupnosti, tj. $p=\left[P^{i}\right]_{i}$. Dosazením dostáváme

$$
\sum_{j=0}^{n} C_{j} P^{i+j}=0
$$

Pro $P=0$ dostáváme triviálně řešení $p=\dot{0}$, dále budeme tedy uvažovat, že $P \neq 0$. Zkrácením P^{i} dostáváme

$$
\sum_{j=0}^{n} C_{j} P^{j}=0
$$

Levou stranu této rovnice, tj. polynom proměnné P, rozložíme na součin polynomů stupně jedna (určíme jeho kořeny P_{j})

$$
C_{n} \prod_{j=0}^{G}\left(P-P_{j}\right)^{S_{j}}
$$

kde

$$
\sum_{j=0}^{G} S_{j}=n
$$

G je počet všech navzájem různých kořenů a P_{j} jsou příslušné kořeny, mohou být i komplexní.
Dá se snadno ukázat, že se to dá vždy udělat právě jedním způsobem - Základní věta algebry. Tedy posloupnosti $\left[P_{j}^{i}\right]_{\mathrm{i}}$ řeší zadanou rovnici. Dále pak i posloupnosti $\left[\binom{i}{A} P_{j}^{i}\right]_{i}$ pro $A<S_{j}$, nebot:

Jak plyne z Lemmatu 2, řeší tyto posloupnosti rovnici

$$
\sum_{i=0}^{S_{j}}(-1)^{i}\binom{S_{j}}{i} P_{j}^{S_{j-i}} p_{n+i}=0,
$$

která odpovídá polynomu $\left(P-P_{j}\right)^{S_{j}}$. Z toho již plyne toto tvrzení, nebot původní rovnice je, jak snadno nahlédneme srovnáním s příslušným polynomem, lineární kombinací několika těchto rovnic, příp. posunutých směrem k vyšším indexům.

Zjevně i každá lineární kombinace těchto řešení je řešením zadané rovnice. Máme tedy řešení tvaru

$$
\left[\sum_{j=0}^{G} \sum_{i=0}^{S_{j-1}} C_{j^{2}}\binom{k}{i} P_{j}^{k}\right]_{k},
$$

$C_{i j}$ jsou libovolné komplexní čísla. Vzhledem k tomu, že jednotlivé členy tohoto součtu jsou lineárně nezávislé ${ }^{1}$ a každé řešení je určeno prvními n členy, jsou toto veškerá řešení této rovnice.

Nehomogenní lineární diferenční rovnice ($C \neq 0$)

Nejprve vyřě̌íme postupem popsaným v 1 . odstavci odpovídající rovnici pro $C=0$. Rešení zadané rovnice se pokusíme najít ve tvaru $\left[p_{i}+K\right]_{i}$, kde p_{i} je řešení upravené rovnice a K je konstanta. Podaříli se nám to, nalezli jsme všechna řešení, nebot každé řešení je určeno prvními n členy, které, jak plyne z předchozího odstavce, vždy můžeme získat dosazením vhodných konstant do řešení.

Máme

$$
\begin{aligned}
\sum_{j=0}^{n} C_{j}\left(p_{i+j}+K\right) & =C \\
\sum_{j=0}^{n} C_{j} p_{i+j} & =0
\end{aligned}
$$

Odečtením

$$
\begin{aligned}
K \sum_{j=0}^{n} C_{j} & =C \\
K & =\frac{C}{\sum_{j=0}^{n} C_{j}}
\end{aligned}
$$

[^0]-4-

Jediný problém nastává, je-li $\sum_{j=0}^{n} C_{j}=0$. Pak můžeme předpokládat obdobné řešení tvaru $\left[p_{i}+\right.$ $+K i]_{i}$ a dostáváme se (za předpokladu $\sum_{j=0}^{n} C_{j}=0$) k

$$
K \sum_{j=0}^{n} j C_{j}=C
$$

Je-li i $\sum_{j=0}^{n} j C_{j}=0$, postupujeme dále k vyšším mocninám, pro k-tou mocninu dostáváme

$$
K \sum_{j=0}^{n} j^{k} C_{j}=C .
$$

Jestliže by se nám podařilo dokázat, že vektory $(1,1, \ldots, 1),(0,1,2, \ldots, n-1), \ldots,\left(0^{n-1}, 1^{n-1}\right.$, $\left.2^{n-1}, \ldots,(n-1)^{n-1}\right)$ jsou lineárně nezávislé, bylo by vzhledem k tomu, že alespoň jeden z C_{j} je různý od 0 , zaručeno, že pro alespoň jednu z mocnin $<n$ je příslušný součet nenulový, čímž by řešení bylo kompletní. Bohužel se toto zatím autorovi nepodařilo.

Dr. Michal Tarana: Limita diference posloupnosti
Věta. O limitě konvergentní posloupnosti.
Necht posloupnost $\left[a_{i}\right]_{i}$ konverguje k L, tj. $\lim _{n \rightarrow \infty} a_{n}=L$, pak $\lim _{n \rightarrow \infty} a_{n}^{\prime}=0$.
Důkaz.

$$
\lim _{n \rightarrow \infty} a_{n}^{\prime}=\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\lim _{n \rightarrow \infty} a_{n+1}-\lim _{n \rightarrow \infty} a_{n}=L-L=0 .
$$

Téma 6 - Bzučovo bahno

Dr. Michal Tarana: Reologie kapalin

Kapaliny můžeme obecně rozdělit na newtonovské (voda, benzín, líh, apod.) a nenewtonovské (olej, želatina, zmrzlina, apod.).

Základní reologický vztah popisující kapalinu je závislost smykového napětí σ na rychlosti deformace D.

Pozn. redakce. Ve skutečnosti je to ještě o trochu složitější. V obecné kapalině působí jak tlakové, tak smykové síly. Všechny tyto jevy popisuje tzv. tenzor napětí (zhruba řečeno: zvolíme-li si v kapalině nějakou malou plošku, pak tenzor napětí nám říká, jaké tečné a normálové napětí bude na této plošce; tenzor napětí nám poskytuje dostaečnou informaci, abychom tyto síly mohli spočítat pro libovolnou orientaci plošky). Stejně tak, k popsání deformace kapaliny nestačí nějaké číslo nebo vektor. Potřebujeme tenzor deformace, který nám řekne, v jakém směru a jak moc se kapalina deformuje. Kapalina je pak plně popsána vztahem mezi tenzorem napětí a tenzorem deformace. Newtonovské kapaliny jsou charakteristické tím, že tento vztah je lineární. Ideální tekutina je taková, že v ní neexistuje tření, jinak řečeno na libovolnou plošku uvnitř kapaliny pưsobí pouze tlak kolmý k této plošce. U viskózních tekutin přistupuje navíc smykové napětí, které je ale právě v případě newtonovských tekutin přímo úměrné rychlosti deformace tekutiny, o čemž už byla řeč.

V grafu jsou znázorněny závislosti $\sigma(D)$ pro newtonovskou kapalinu (a) a pro některé nenewtonovské kapaliny. Graf (b) popisuje vlastnosti binghamovské (plastické) kapaliny. Podle tohoto zákona se chová bahno většiny bažin a je v něm skrytá jejich zrádnost. Z grafu je vidět, že když bude tlak tělesa ponořeného v bažině malý, kapalina nebude téci a bažina se bude chovat jako pevné těleso. Takový lehký neživý předmět může ležet na hladině. Když se překročí hodnota σ_{0}, začne se bažina chovat jako plastická kapalina a těleso se začne ponořovat, aniž by tomu mohl zabránit vztlak. Zrádnost je v tom, že bažina se „specializuje" na živé předměty. Kdyby se člověk nehýbal, neponořil by se. Ale když se částečně ponoří, každý další pohyb přispívá k záhubě.

Marie Hanzlikiková:

Jak rychle a zda vůbec se člověk utopí v bahně, zívisí na jeho přesné hustotě:
(a) bahno nepříliš husté, podobné vodě - můžeme plavat
(b) normální bahno - utopíme se
(c) bahno príliš husté, s malým podílem vody - neklesneme tolik, abychom se utopili

Bahno je kapalný roztok, ve kterém je disperzním prostředím voda a dispergovanými částicemi jsou částečky půdy. Pří vzniku bahna lze vyloučit tyto půdní druhy: štěrkovité a kamenité a lehké půdy to vyhovují půdy střední a těžké, protože dobře vážou vodu a živiny.

Poté, co se šlověk ponoří do nějaké hloubky bahna, působí na tělo síla gravitační a vztlaková a navíc ještě tlak částeček půdy obsažených v bahnu. Pokud se člověk snaží dostat pryč z bahna a např. pohybuje rukama či sebou jinak hází, ponořuje se stále hloubě̌ji. Bahno má totiž určitou pevnost a proto cirkulace bahna neprobíhá snadno a působí zde velké odporové síly.

Prof. Jan Mysliveček: Bzučovo bahno
Vezmete-li si do ruky libovolnou středoškolskou učebnici fyziky (např. [1]), zjistíte, že Archimedův zákon je odvozen pouze pro ideální tekutinu (ideální kapalina je nestlačitelná a nemá vnitřní tření). Tato podmínka není uvedena v místě odvození Archimédova zákona, ale při tomto odvození se používá vztah pro hydrostatický tlak v kapalině. A právě tento vztah v bahně neplatí. Bahno určitě má vnitřní tření a je pružné! Tíhová síla působící na ideální kapalinu je příčinou hydrostatického tlaku, pro který platí $p=h \rho g$. Odvození Archimédova zákona je elementární záležitostí, kterou se nebudeme zabývat. Situace se zkomplikuje, pokud budeme uvažovat stlačitelnost kapaliny. Nicméně se o to pokusím.

Zvolíme souřadnou soustavu tak, že osy x, y určují vodorovnou hladinu povrchu kapaliny a osa z je na ně kolmá, záporná je směrem dolů a kladná směrem nahoru. V naší souřadné soustavě je tlak funkcí jen z, pro různé x, y se nemění. Lze ukázat (např. [2]), že rovnice rovnovážného stavu ve složkách vypadá takto:

$$
\begin{equation*}
\frac{\partial p}{\partial x}=0, \frac{\partial p}{\partial y}=0, \frac{\partial p}{\partial z}=-\rho g . \tag{1}
\end{equation*}
$$

Pro nestlačitelnou tekutinu platí elementárně

$$
\begin{equation*}
p=p_{a}+\rho g(-z) . \tag{2}
\end{equation*}
$$

Přitom uvažujeme $\rho=$ konst, což neovlivňuje odvození zákona. Pro stlačitelnou kapalinu tento vztah platí, jenom si musíme uvědomit, že hustota je funkcí polohy a prípadně času.

Stlačitelná tekutina se řídí Boyle-Mariottovým zákonem²

$$
\begin{equation*}
\frac{p}{p_{0}}=\frac{\rho}{\rho_{0}} . \tag{3}
\end{equation*}
$$

${ }^{2}$ Pozn.: opravdu to platí pro libovolnou stlačitelnou tekutinu? Já to znám jenom pro plyny.

Nyní budeme přepokládat znalost funkce, která určuje hustotu tekutiny v závislosi na poloze a čase $\rho=\rho(r, t)$. Potom z rovnice (2) dostaneme

$$
\begin{equation*}
\mathrm{d} p=-\rho_{0} \frac{p}{p_{0}} g \mathrm{~d} z \tag{4}
\end{equation*}
$$

z čehož integrací dostáváme

$$
\begin{equation*}
p=C e^{-\frac{p o s}{P_{0}} z} . \tag{5}
\end{equation*}
$$

 $C=p_{0}$ (p_{0} není atmosférický tlak, ale tlak v hloubce h, kde ho považujeme za známý). Výsledný vztah je tedy

$$
\begin{equation*}
p=p_{0} e^{-\frac{p o g}{p 0} z} . \tag{6}
\end{equation*}
$$

Pro hustotu potom platí

$$
\begin{equation*}
\rho=\rho_{0} e^{-\frac{\rho_{0} g}{P 0} z} . \tag{7}
\end{equation*}
$$

Odvodíme obdobu Archimédova zákona. Budeme uvažovat pro jednoduchost krychli. Uvažme horní stěnu krychle v hloubce h ($\mathrm{tj} . z=-h$). Navíc nebudeme uvažovat problém ve třech dimenzích, ale pouze ve dvou, neboť, jak již víme, roviny konstantního tlaku jsou rovnoběžné s hladinou. Budeme tedy uvažovat pouze osy z, x definované podobně jako při odvozování funkce tlaku. Na vrchní stěnu krychle působí síla, jejíž velikost z definice tlaku $F_{1}=p_{1} S$, a na spodní stěnu v hloubce $h+\Delta h$ síla $F_{2}=p_{2} S$. Pak výsledná síla, kterou působí kapalina na krychli (síly na bocční stěny se vyruší) bude mít velikost

$$
\left.\begin{array}{rl}
F & =S\left(p_{1}-p_{2}\right)=S p_{0}\left(e^{\frac{p_{0} g}{P 0}}(h+\Delta h)\right. \\
& =S p_{0} e^{\frac{p_{0} g}{P_{0}} h}\left(e^{\frac{p_{0} g}{P 0}} \Delta h\right. \tag{8}
\end{array}\right)
$$

Tento vztah vypadá trošku podivně, nemohla by být třeba tato síla záporná? To může nastat v případě $e^{\frac{p_{00 g}}{P 0} \Delta h}-1<0$. Provedeme-li přirozený logaritmus této nerovnice, dostaneme (při logaritmování uvažujeme rovnost) $\Delta h<0$. To je samozřejmě v pořádku, nebot délka hrany záporná být nemůže (Δh jsme si definovali jako kladné, vzhledem k orientaci osy z je to v pořádku. Čím záporněǰíí hodnota z, tím hlouběji je těleso).
Nyní musíme srovnat vztah, který jsme právě odvodili, s Archimedovým zákonem. To je jednoduché, nebot tlak ve stlačitelné tekutině roste exponenciálně, ve větší hloubce tedy bude vztlaková síla větší než je vztlaková síla v nestlačitelné kapalině.

Pozn. Archimédův zákon lze pro obecně stlačitelnou tekutinu bez vnitřního tření formulovat zhruba následujícím způsobem. Uvažme, že těleso ponořené do tekutiny nahradíme tekutinou zabírající stejný objem V jako naše těleso. Tekutina musí být v rovnováze, takže na část o objemu V musí okolní tekutina působit silou co do velikosti se rovnající její tíze. Když ted v objemu V nahradíme tekutinu zpět naším tělesem, tlakové poměry v tekutině se nezmění. Máme tedy závěr: na těleso ponořené v tekutině (a zaujímající objem V) působí okolní tekutina silou rovnající se tíze
části tekutiny, zaujímající objem V. Ve větší hloubce bude logicky vztlaková síla působící na daný objem větší, nebot je tam vetší tlak, a tak tam má tekutina větší hustotu.

Pokud je průměrná hustota člověka menší, než je průměrná hustota bahna, neznamená to, že na povrchu nemůže být hustota člověka větší než hustota bahna. Pokud by člověk mohl klesnout dostatečně hluboko, pak by přestal klesat.

Bahno se kromě stlačitelnosti (elasticity) projevuje viskozitou. Proto se težko z bahna vytahuje ponořený člověk. Viskoelastické tekutiny nejsou Newtonovské kapaliny (některé prameny je určují jako tekutiny, kde neplatí Newtonova hypotéza, která tvrdí, že tečné napětí je úměrné rychlostnímu gradientu) a projevuje se u nich Weisenbergưv efekt. Pokud budeme rotovat tenkou tyčinkou v dutém válci a jejich konce ponoříme do nádobky s viskoelastickou tekutinou (např. vaječný bílek), potom daná tekutina bude stoupat po rotující tyčince až nahoru. Může dokonce vytéct z válce, který obklopuje rotující tyčinku. Pokusím se sehnat fotografie tohoto pokusu. Je možné, že viskozita bahna hraje podstatnou roli, ale nedovedu si představit jakou.

Zavěrem lze říct, že se nám podařilo odvodit obdobu Archimédova zákona pro elastické tekutiny. Tento zákon nastiňuje řešení problému, neposkytuje však jeho plné vysvětlení.

Pozn. myslím, že k řešení problému je odtud ještě daleko. Autor zde odvodil obecný tvar Archimédova zákona pro stlačitelnou tekutinu, ale bez vnitřního tření. Podle mě má ale v naší úloze právě vnitřní tření rozhodující vliv. Nevezmeme-li jej v úvahu, nemůžeme udělat žádný konkrétní závěr.
[1] Prof. RNDr. Jaroslav Vachek a kol.: Fyzika pro I. ročník, SPN 1985
[2] V.Obetková, A.Marmillová, A.Košinárová: Teoretická mechanika, Alfa Bratislava 1990

Téma 7 - Indiskrétně s diskétní matematikou

Doc. Zdeněk Dvořák:

Fronta na záchod

Základní úloha

Nejprve si určíme, kolika způsoby se lze dostat do stavu, kdy prošlo a lidí a v pokladně je o b pětikorun více, než bylo na začátku, jestliže by původně pětikorun byla neomezená zásoba (tedy b může být i záporné). Je zřejmé, že příchozí s pětikorunou zvýší jejich počet o 1 , s desetikorunou ho naopak snízí. Každou takovou frontu si můžeme znázornit ve grafu, přičemž na vodorovné ose budeme mít počet prošlých lidí, na svislé pak počet pětikorun, a naopak, každému takovému grafu odpovídá právě 1 fronta. Příchozímus pětikorunou pak odpovídá tah šikmo nahoru, s desetikorunou šikmo dolů. Jak si povšimneme, hledaný počet front je ($\left.\begin{array}{c}a \\ \frac{a+b}{2}\end{array}\right)$. Jestliže v dalším textu neuvedu jinak, binomické koeficienty, které nedávají smysl (dolní číslo je necelé, <0 nebo > než horní ćíslo) pokládám za nulové - tento vztah je jednak zřejmý ze srovnání s Pascalovým trojúhelníkem, jednak se dá dokázat indukcí.

Abychom získali řešení zadaného příkladu, musíme odečíst ty, které klesají pod 0 , tedy ty, které protínají vodorovnou přímku, udávající počet pětikorun -1. Jestliže si graf každé takové fronty od tohoto 1. dotyku překlopíme osově podle této přímky, dostáváme graf, končicí v bodě $[a,-2-b]$. Je zřejmé, že ke každému takovému grafu můžeme původní graf rekonstruovat stejným způsobem, tedy každý takový graf odpovídá právě jedné nehodící se frontě a jejich počet je $\left(\frac{a-b-2}{2}\right)$.

Tedy dosadíme-li ze zadání za $a=m+k, b=k-m$, dostáváme hledaný počet $\binom{m+k}{k}-\binom{m+k}{m-1}$.

(a) zadrhnutí na místě $2 s+1$

Zadrhne-li se fronta poprvé na místě $2 s+1$, dosáhli jsme právě v tomto místě poprvé v grafu odpovídajícím příslušné frontě hodnoty -1 . To znamená, že bylo použito x desetikorun a y pětikorun, pričemž platí, že $x+y=2 s+1, x-y=1$, tedy $x=s+1, y=s$. Výše uvedený vzorec zde nelze použít, nebot̂ všechny tyto cesty jsou chybné, ale je zřejmé, že každá tato cesta procházela bodem [$2 s, 0$], odkud se sem dostala přidáním poslední desetikoruny, a na tento bod již vzorec použít lze, tedy hledaný počet je $\binom{2 s}{s}-\binom{2 s}{s-1}=\frac{1}{s+1}\binom{2 s}{s}$.

(b) zadrhnutí na místě $2 s$

Abychom se dostali do tohoto stavu, musíme použít s pětikorun a s desetikorun. První příchozí musí mít pětikorunu a dostane se do stavu $[1,1]$, poslední desetikorunu a bude vycházet ze stavu $[2 \mathrm{~s}-1,1]$. Při přechodu mezi těmito stavy se graf nesmí dotknout 0 , jedná se vlastně o situaci analogickou původnímu zadání, pouze posunutou o 1 nahoru a doprava a stejným postupem dostáváme, že počet takovýchto cest do tohoto bodu je $\frac{1}{\varepsilon}\binom{2 s-2}{s-1}$. Z tohoto bodu musíme použít ještě $m-s$ desetikorun a $k-s$ pětikorun, ted již podle normálního ř̌̌šení, tedy $\binom{m+k-2 s}{k-s}-\binom{m+k-2 s}{m-s-1}$. Tyto 2 části cesty jsou na sobě nezávislé, dohromady je tedy $\frac{1}{s}\binom{2 s-2}{s-1} \cdot\left(\binom{m+k-2 s}{k-s}-\binom{m+k-2 s}{m-s-1}\right)$ rìzných front.

Brooklyn,...

Základní úloha

Uvědomíme-li si, že počet cest do bodu $[x, y]$ je součtem počtu cest do $[x-1, y]$ a do $[x, y-1]$, srovnáním z Pascalovým trojúhelníkem dostáváme a indukcí dokážeme, že počet cest do tohoto bodu je $\binom{m+n}{n}$.

(a) Imigrační vlna

Jak plyne z př̌edchozího bodu, počet cest délky N, které šly $k \times$ na východ, je $\binom{N}{k}$, a to je také počet imigrantů na jednotlivých křižovatkách (o k ulic na východ a $N-k$ na sever), nebot každý z nich prošel právě jednu z cest délky N a každou takovou cestou šel právě jeden z nich.

(b) Osa X

Obdobně jako v předchozím bodě, i zde každou cestu z 0 do x projde právě 1 občan, tedy i zde je výsledný počet občanů na jednotlivých číslech roven počtu cest do těchto bodů, počet cest délky k do x je roven součtu počtů cest délky $k-1$ do bodů $x-1$ a $x+1$ a opět srovnáním z Pascalovým trojúhelníkem dostáváme, že příslušný počet opilců je ($\underset{\frac{N+x}{2}}{N}$).
(c) Osa Y

Počet opilců na jednotlivých číslech je počet cest na tato čísla, které neprochází bodem -1, tedy užitím postupu popsaného v oddílu 1., Základní úloha, dostáváme, že jich na čísle x bude $\left(\frac{N}{\frac{N}{2}}\right)+$ $-\binom{N-x-2}{\frac{N}{2}}$.
(d) Casino

Bude nutné drobně upřesnit pravidla, takže

- Sázka je vždy 1 dolar
- Nelze hrát na dluh

Poté opět využijeme srovnání grafem (na vodorovné ose počet her, na svislé aktuální stav konta dotyčného občana). Zajímá nás počet cest do kteréhokoliv bodu $[N, x], x \geq 0$, takových, že neprotínají stav konta -1 , tedy stejným postupem jako v oddílu 1 dostáváme, že počet těchto cest je

$$
\sum_{x=0}^{N}\binom{N}{\frac{N+x}{2}}-\sum_{x=0}^{N}\binom{N}{\frac{N-x-2}{2}} .
$$

Vynecháním nesmyslných hodnot a úpravou dostáváme

$$
\sum_{i=0}^{\left\lfloor\frac{N}{2}\right\rfloor}\binom{N}{i}-\sum_{i=0}^{\left\lfloor\frac{N}{2}\right\rfloor-1}\binom{N}{i}=\binom{N}{\left\lfloor\frac{N}{2}\right\rfloor} .
$$

Vzhledem k tomu, že pravdě̌podobnost výhry i prohry je stejná, jsou všechny tyto cesty stejně pravděpodobné, všech možností hry je 2^{N}, tedy pravděpodobnost je

$$
\frac{\left(\left\lfloor\begin{array}{c}
N \\
\left.\frac{N}{2}\right\rfloor
\end{array}\right)\right.}{2^{N}}
$$

Tvrzeni.

$$
\binom{2 n}{n}<\frac{2^{2 n}}{\sqrt{2 n+1}}
$$

Důkaz. Císlo

$$
P=\frac{\prod_{i=1}^{n}(2 i-1)}{\prod_{i=1}^{n} 2 i}=\frac{(2 n)!}{2^{2 n}(n!)^{2}}=\frac{1}{2^{2 n}}\binom{2 n}{n},
$$

stačí tedy ukázat, že $P<\frac{1}{\sqrt{2 n+1}}$. Uvažujme

$$
1>\prod_{i=1}^{n}\left(1-\frac{1}{(2 i)^{2}}\right)=\prod_{i=1}^{n}\left(\frac{(2 i+1)(2 i-1)}{(2 i)^{2}}\right)=(2 n+1) P^{2} .
$$

Tedy $P<\frac{1}{\sqrt{2 n+1}}$
Pravdě̌podobnost P nezkrachování je tedy menšíi než $\frac{1}{\sqrt{N+1}}$, čili

$$
\lim _{N \rightarrow \infty} P=0 .
$$

Součet cifer

1. Kolika způsoby lze celé nezáporné ćíslo k vyjádřít jako součet n celých nezáporných čísel? Mějme n přihrádek a k nerozlišitelných kuliček. Kolika způsoby je možnéje do těchto přihrádek umístit?
Jak snadno nahlédneme, jsou oba počty stejné, nebot́ nahradíme-li přihrádku počtem kuliček v ní, dostáváme ně̌jaký součet řešící původní úlohu a naopak. Chceme tedy mezi k kuliček v řadě vložit $n-1$ přepážek, tedy vlastně z $n+k-1$ pozic jich vybrat $n-1$, na nichž budou přepážky, je jich tedy $\binom{n+k-1}{n-1}$
2. Kolika způsoby lze celé nezáporné číslo k vyjádřit jako součet n celých nezáporných čísel menších než m ?
Použijeme principu inkluze a exkluze:

- Všech s tímto součtem je $\binom{n+k-1}{n-1}$,
- těch, které mají na jedné pozici číslo větší než m, je $\binom{n}{1}^{\star} \cdot\binom{n+k-m-1}{n-1}^{\mathbb{V}}$,

[^1]${ }^{\circ}$ snižíme tuto pozici o m

- těch, které mají na 2 pozicích číslo větsíí než m, je $\binom{n}{2}\binom{n+k-2 m-1}{n-1}$,
- těch, které mají na n pozicích číslo větší než m, je $\binom{n}{n}\binom{n+k-n m-1}{n-1}$.

Dohromady

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{n+k-i m-1}{n-1} .
$$

3. Aby bylo číslo n ciferné, první cifra nesmí být 0 , tedy odečteme ještě čísla, která mají první cifru 0 , těch je zřejmě stejně, jako počet způsobů, jak lze celé nezáporné číslo k vyjádřit jako součet $n-1$ celých nezáporných čísel menších než m, tedy celkově takových čísel bude

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{n+k-i m-1}{n-1}-\sum_{i=0}^{n-1}(-1)^{i}\binom{n-1}{i}\binom{n+k-i m-2}{n-2} .
$$

Závorky

A na závěr ještě jeden obdobný příklad.
Kolik je smysluplných uzávorkování (smysluplné = rozmístíme-li mezi závorky vhodné operandy a operátory, dostaneme korektní výraz = počet otevíracích a zavíracích závorek v celém výrazu je stejný a v každém bodě je počet otevíracích větší nebo roven počtu zavíracích), v nichž je N otevíracích závorek?

Použitím postupu z oddílu 1 dostáváme, že jich je

$$
\frac{1}{N+1}\binom{2 N}{N}
$$

Rozšiřeni. Máme z typů závorek (kulaté, složené,. . .). Kolik je smysluplných uzávorkování, v nichž je N otevíracích závorek a zavirací závorky jsou stejného typu jako príslušné otevírající závorky?

Typ zavírací závorky je určen typem otevíracích závorek, každá otevírací závorka může mít libovolný typ, tedy $z^{N} \frac{1}{N+1}\binom{2 N}{N}$.

Rozšǐreni. Kvůli lepšímu estetickému vzhledu nechceme, aby 2 po sobě následující otevírací závorky měly stejný typ.

První závorku můžeme zvolit z způsoby, každou další $z-1$ způsoby (nesmí být stejná jako předchozí), tj. $z \cdot(z-1)^{N-1} \frac{1}{N+1}\binom{2 N}{N}$.

Úloha 8 - Alešovy koule

Pred napísaním vzorového riešenia sme si chceli najprv vyskúšat experiment. Preto sme podla zadania osvetlovali gule mäkkým röntgenovým žiarením, až začali gule žiarit. Potom sme ich k sebe približili, došlo ku skratu a Aleš nám odpadol. Všetci pevne veríme, že sa z toho zotaví a nezanechá to na ňom žiadne stopy.
Celý príklad sa dá rozdelit na dve časti:

- nabíjanie guličiek
- výpočet polohy, v ktorej sa guličky ustália

Nabíjanie guličiek

Ked̉ guličky osvetlujeme, dochádza ku fotoefektu, dopadajúce fotóny vyrážajú z povrchu elektróny. Ak fotóny majú frekvenciu f, tak vyletujúce elektróny majú rýchlosṫ v.

$$
\begin{equation*}
E_{k}=h v-W_{k}=\frac{1}{2} m v^{2}, \tag{1}
\end{equation*}
$$

kde W_{k} je výstupná práca. Pre med' je to 4.4 eV a pre platinu $5.36 \mathrm{eV}^{3}$. Z týchto údajov sa dá vypočítat́, že maximálna vlnová dľ̌ka takého svetla, aby začal prebiehat fotoefekt u oboch guličiek, je 231 nm .
Pozn. Na vyrazenie elektrónu z medi treba fotón $\mathrm{s} \lambda_{\max }=277 \mathrm{~nm}, \mathrm{z}$ platiny $\lambda_{\text {max }}=231 \mathrm{~nm}$. Ak sa guličky dotýkajú, stačí ožiariṫ medenú guličku, tá sa nabije, čast náboja prejde na platinovú guličku a guličky sa začnú odpudzovat. Platinovú guličku možno nabiť aj ked’ energia fotónv nestačí na vyrazenie elektrónov z povrchu. Samozrejme, náboj na platine bude velmi malý. V praxi by to dopadlo tak, že čast elektrónov z medi by po vyrazení dopadla na platinovú guličku, tá by sa vybila, dotkla sa medenej a opät́ sa nabila. Tento proces by sa opakoval, dokial' by sme ožarovali medenú guličku.
Gulička sa pomaly kladne nabíja, a v okamihu, ked’ potenciálna energia, ktorú má elektrón na povrchu, dosiahne hodnotu jeho kinetickej energie, elektrón sa už nebude môcṫ dostat zo sféry pôsobenia (nie, Sovietského Zväzu nie) nabitej guličky. Gulička sa potom prestane nabíjat, pretože všetky novouvolnené elektróny opät dopadnú na guličku. Dá sa dokázate, že náboj sa s časom mení ako $Q=Q_{\text {max }} \cdot \exp (-$ konšt./t). Preto sa náboj bude tejto hodnote bližité, a po určitom časa bude rozdiel $Q_{\max }-Q$ zanedbatelne malý.

Potenciálna energia elektrónu na povrchu guličky je:

$$
\begin{equation*}
E_{p}=-\frac{Q e}{4 \pi \varepsilon r} \tag{2}
\end{equation*}
$$

Skombinovaním rovníc (1) a (2) dostávame:

$$
\begin{gather*}
h v-W_{\mathrm{Pt}}=\frac{Q_{\mathrm{Pt}} \cdot e}{4 \pi \varepsilon r} \Longrightarrow Q_{\mathrm{Pt}}=\frac{4 \pi \varepsilon r}{e}\left(h v-W_{\mathrm{Pt}}\right) \tag{3}\\
h v-W_{\mathrm{Cu}}=\frac{Q_{\mathrm{Cu}} \cdot e}{4 \pi \varepsilon r} \Longrightarrow Q_{\mathrm{Cu}}=\frac{4 \pi \varepsilon r}{e}\left(h v-W_{\mathrm{Cu}}\right) \tag{3}
\end{gather*}
$$

${ }^{3}$ teraz dúfam, že som to z tabuliek dobre odpísal

Výpočet ustálenej polohy

Na každú guličku pôsobí odpudivá elektrická sila (obe sú predsa kladne nabité), a gravitačná sila. Zložky týchto síl, ktoré sú rovnobežné s vláknom (predpokladajme, že je dokonale tuhé) sa vykompenzujú reakciou vlákna. Zložky kolmé na vlákno musia byt opačne orientované, aby bola gulička v rovnováhe, a nepohybovala sa. Kedžze \vec{g} a \vec{F}_{g} vektor sú rovnobežné, z vety o striedavých uhloch vyplýva, že uhol medzi \vec{F}_{\perp} a \vec{F}_{g} je tiež α. Preto musí platit:

$$
\begin{equation*}
m_{1} g \cdot \sin \alpha=F_{e} \cdot \cos \varphi_{1}, \text { a zároveň } m_{2} g \cdot \sin \beta=F_{e} \cdot \cos \varphi_{2} . \tag{4}
\end{equation*}
$$

Podlá obr. 1 platí, že $\varphi_{1}+\psi=\pi / 2$. Rovnako $\varphi_{2}+\psi=\pi / 2$. Potom teda

$$
\begin{equation*}
\varphi_{1}=\varphi_{2}=\pi / 2-\psi . \tag{5}
\end{equation*}
$$

Pouvažujme nad tým, ako vyzerá vzṫah pre elektrickú silu. Všeobecne platí:

$$
\vec{F}_{\mathrm{e}}=\sum_{i=1}^{N_{1}} \sum_{j=1}^{N_{2}} \frac{Q_{\mathrm{Pt}} \cdot Q_{\mathrm{Cu}} \cdot \vec{r}_{\mathrm{i}, j}}{4 \pi \varepsilon r^{3}},
$$

kde index i, j označujú jednotlivé náboje na oboch guličkách. Ak je náboj spojite rozložený, potom

$$
\vec{F}_{e}=\iint_{S} \frac{\sigma \cdot \mathrm{~d} S \cdot \vec{r}}{4 \pi \varepsilon r^{3}}
$$

kde \boldsymbol{r} je vzdialenost nedzi dvoma plôškami $\mathrm{d} S$ s plošnou hustotou náboja σ. Ak by boli guličky blízko seba, kladné náboje by sa odpudzovali tak silno, že v miestach, kde sú si gule bližšie, je ho menej ako na opačnom konci. To by nám velmi skomplikovalo už tak komplikovaný prípad, a potom by sme nemohli o náboji povedat́, že ho možno považovat za bodový a umiestnit́ do stredu gule. Preto položme $l \gg r$. Pre elektrickú silu potom možno písat:

$$
\begin{equation*}
F_{\mathrm{e}}=\frac{Q_{\mathrm{Pt}} \cdot Q_{\mathrm{Cu}}}{4 \pi \varepsilon L^{2}}=\frac{\psi}{L^{2}}, \text { kde } \psi \text { je konštanta, } \psi=\frac{Q_{\mathrm{Pt}} \cdot Q_{\mathrm{Cu}}}{4 \pi \varepsilon} . \tag{6}
\end{equation*}
$$

Podla sinovej vety platí:

$$
\begin{equation*}
\frac{\sin (\alpha+\beta)}{L}=\frac{\sin \gamma}{L} . \tag{7}
\end{equation*}
$$

A taktiež zrejme aj súčet uhlov v trojuholníku by sa mohol rovnat 180° :

$$
\begin{equation*}
\alpha+\beta+2 \gamma=\pi \tag{8}
\end{equation*}
$$

Máme 5 neznámych ($\alpha, \beta, \gamma, L, F_{\mathrm{e}}$), a 5 rovníc. Treba \ldots treba ich už iba vyriě̌it. Snád’ sa mi to podarí. Najprv dosadme (5) do (4) a zbavme sa φ_{1}, φ_{2}. Dosadme (8) do (7). Kedže platí: $\sin (\pi+$ $-\gamma)=\sin \gamma$, pre lubovalné γ, potom

$$
\begin{equation*}
\frac{\sin 2 \gamma}{L}=\frac{\sin \gamma}{l} \Longrightarrow \cos \gamma=\frac{L}{2 l} . \tag{9}
\end{equation*}
$$

$\mathrm{Z}(8)$ si vyjadrime teraz γ a dosadíme do (9). Dostávame:

$$
\begin{equation*}
\sin \left(\frac{\alpha+\beta}{2}\right)=\frac{L}{2 l}=\cos \gamma \Longrightarrow \sin \gamma=\cos \left(\frac{\alpha+\beta}{2}\right) . \tag{10}
\end{equation*}
$$

Z (10) dosad̉me do (4), čím dostávame:

$$
\begin{equation*}
m_{1} g \cdot \sin \alpha=\frac{\psi}{L^{2}} \cdot \cos \left(\frac{\alpha+\beta}{2}\right) \tag{11}
\end{equation*}
$$

a tiež

$$
\begin{equation*}
m_{2} g \cdot \sin \beta=\frac{\psi}{L^{2}} \cdot \cos \left(\frac{\alpha+\beta}{2}\right) . \tag{11}
\end{equation*}
$$

V trigonometrii platí: $\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$. Odčítaním rovníc (11) dostávame:

$$
\begin{equation*}
\sin \left(\frac{\alpha-\beta}{2}\right)=\frac{\psi}{2 g L^{2}} \cdot \frac{m_{2}-m_{1}}{m_{1} m_{2}} \tag{12}
\end{equation*}
$$

Ak rovnice naopak sčítame, dostaneme:

$$
\begin{equation*}
\cos \left(\frac{\alpha-\beta}{2}\right)=\operatorname{cotg}\left(\frac{\alpha+\beta}{2}\right) \frac{\psi}{2 g L^{2}} \cdot \frac{m_{1}+m_{2}}{m_{1} m_{2}} \tag{13}
\end{equation*}
$$

Do (13) dosadíme (10), a dostávame:

$$
\begin{equation*}
\cos \left(\frac{\alpha-\beta}{2}\right)=\frac{\psi}{2 g L^{2}} \cdot \frac{m_{1}+m_{2}}{m_{1} m_{2}} \cdot \frac{\sqrt{4 l^{2}-L^{2}}}{L} \tag{14}
\end{equation*}
$$

Ak rovnice (12) a (14) umocníme na druhú a sčítame, dostaneme:

$$
\begin{equation*}
\left(\frac{\psi}{2 g L^{2}}\right)^{2} \cdot\left[\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right)^{2} \frac{4 l^{2}-L^{2}}{L^{2}}+\left(\frac{m_{2}-m_{1}}{m_{1} m_{2}}\right)^{2}\right]=1 . \tag{15}
\end{equation*}
$$

Aby sa nám lepšie počítalo, zaved̉̉e pre konštanty substitúcie:

$$
\begin{aligned}
\left(\frac{2 g m_{1} m_{2}}{\psi}\right)^{2} & =F \\
4 l\left(m_{1}+m_{2}\right)^{2} & =A \\
-4 m_{1} m_{2} & =B
\end{aligned}
$$

Dosadme, a dostávame: $F L^{4}-B L^{2}-A=0$. Toto je bikvadratická rovnica, zavedme substitúciu $L^{2}=P$. Po substitúcii máme už kvadratickú rovnicu, ktorej riešením je

$$
P_{1,2}=\frac{B \pm \sqrt{B^{2}+4 A F}}{2 F} .
$$

Fyzikálny význam má iba koreň, ktorý je kladný (nezabúdajme, že B je záporné). Po dosadení za výrazy A, B, F, P dostávame:

$$
\begin{aligned}
L^{2} & =\frac{\sqrt{16 m_{1}^{2} m_{2}^{2}+16 l^{2}\left(m_{1}+m_{2}\right)^{2} \cdot\left(\frac{2 g m_{1} m_{2}}{\psi}\right)^{2}}-4 m_{1} m_{2}}{2\left(\frac{2 g m_{1} m_{2}}{\psi}\right)^{2}} \\
& =\left(\frac{\psi}{2 g^{2} m_{1} m_{2}}\right) \cdot\left(\sqrt{\psi^{2}+4 g^{2} l^{2}\left(m_{1}+m_{2}\right)^{2}}-\psi\right) .
\end{aligned}
$$

No, toto by mal byt prakticky výsledok. Dá sa teraz ešte do tejto rovnice dosadit za ψ, do ψ ešte za $Q_{\mathrm{Pt}}, Q_{\mathrm{Cu}}$ z rovníc (3) a za hmotnosti

$$
\begin{aligned}
& m_{1}=m_{\mathrm{Cu}}=\frac{4}{3} \pi r^{3} \rho_{\mathrm{Cu}} \\
& m_{2}=m_{\mathrm{Pt}}=\frac{4}{3} \pi r^{3} \rho_{\mathrm{Pt}}
\end{aligned}
$$

Ale klidne môžeme povedat, že m_{1} je platina a m_{2} med. Prejaví sa nám to iba pri (4). Kto chce, môže sa pohrat́, mne sa ani náhodou nechce dosádzať taká strašná tfuj numera.

Úloha 9 - Rychleji než světlo

Zadání jako obvykle připouštělo dvojí interpretaci. Zhruba polovina z vás řešila úlohu, kolik musíme nechat malých krychliček, aby při pohledu ve směru rovnoběžném s některou hranou krychle nebylo skrz krychli vidět. Druhá polovina řešila úlohu obecnější - a podstatně těžší, kde se prripouští pohled v libovolném směru, tedy i našikmo. Našli se i tací jedinci, kteří se snažili rozebrat obě varianty, za což byli po zásluze odměněni.
Takže nejdřív k první variantě úlohy (takto to bylo i původně zamýšleno). Především, každá stěna krychle o hraně n obsahuje n^{2} jednotkových krychliček. To je tedy minimálí počet krychliček, který musíme nechat na místě. Ted ukážeme, že n^{2} krychliček opravdu stačí.
Řešení lze v podstatě shrnout do obrázku (viz obr.). Ten ukazuje návod, jak do čtverce o straně n (v našem př́padě pro $n=6$, obecný postup je zřejmý) vepsat čísla $1, \ldots, n$, a to tak, aby se v každém řádku a každém sloupci vyskytovalo každé z nich právě jednou (takovému čtverci se někdy říká latinský). Tento obrázek můžeme interpretovat i jinak. Představme si, že naši krychli vidíme v půdorysu. Pak číslo v daném poličku čtverce značí, ve které vodorovné vrstvě v daném (vertikálním) sloupečku necháme malou krychličku. Snadno ověříme, že toto rozmístění n^{2} krychliček vyhovuje zadání.

1	2	3	4	5	6
2	3	4	5	6	1
3	4	5	6	1	2
4	5	6	1	2	3
5	6	1	2	3	4
6	1	2	3	4	5

Pokud by vás zajímalo, kolik je všech řě̌ení naší úlohy, uvědomte si, že jich je právě tolik, kolik je latinských čtverců řádu n (naše konstrukce totiž zadala vzájemně jednoznačné zobrazení mezi latinskými čtverci a neprůhlednými krychlemi, obsahujícími právě n^{2} krychliček). No a latinské čt verce můžeme generovat pomocí permutací čísel $1, \ldots, n$, ovšem jen takových, které mají jeden cyklus (snadno pochopíte, víte-li, co je to cyklus permutace). Do prvního ǎádku čtverce zapíšeme čísla (v tomto pořadí) $1, \ldots, n$. Do druhého řádku zapíšeme jejich příslušnou permutaci. Do třetího řádku zapíšeme tutéž permutaci, ovšem aplikovanou na čísla druhého rádku (tedy vlastně druhou mocninu naší jednocyklové permutace), atd. To, že permutace má jeden cyklus, nám zajistí, že se žádné číslo nebude v žádném sloupečku opakovat.

Speciální konstrukci použitou výše (viz obr.) ted už chápeme jako aplikaci permutace

$$
1 \rightarrow 2 \rightarrow \ldots \rightarrow n \rightarrow 1
$$

A nyní už k druhé variantě úlohy. Navrhli jste různé algoritmy, jak můžeme vyříznout co nejvíc malých krychliček, aby skrz tu velkou ještě nebylo vidět. Uvedu nejlepší, který jste našli. Aby krychle vypadala při pohledu ze všech směrů jako celá, musíme určitě ponechat krychličky na hranách a v rozích. Takových je celkem $12 n-16$. Hlavní finta je ted’ v tom, že krychle bude neprưhledná, když kromě hran a rohů bude neprůhledný také její vnitřek, tj. krychle o hraně $n-2$. Vnitřky stěn velké krychle, obsahující celkem $6(n-2)^{2}$ krychliček, pak můžeme vyříznout. Aplikujeme ted ${ }^{\prime}$ tentýž postup na menší krychli o hraně $n-2$, po které ted̉ taky chceme, aby byla nepri̊hledná. Pokračujeme dál, až nám zbude krychle o hraně buď 2 (v prípadě sudého n), nebo 1 (v prípadě lichého n). Celkem tedy necháme na místě $12 n-16+12(n-2)-16+12(n-4)-16+\ldots$ krychliček (v lichém př́padě sčítáme jenom do $12 \cdot 3-16$ a potom přič̌teme jedničku za prostřední krychličku). Tento součet vyjde pro n sudé i liché stejně, a to $3 n^{2}-2 n$.

Máme tedy postup, jak nechat v krychli jen $3 n^{2}-2 n$ malých krychliček tak, aby byla stále neprůhledná. Z uvedené konstrukce ovšem neplyne, že je to optimální řešení. Já jsem lepší řešení nenašel. Úloha najít takto skutečně nejmenší potřebné množství malých krychliček asi bude obecně hodně těžká. Zkuste si třeba dokázat už jen dvojrozměrnou variantu, tj. kolik jednotkových čtverečků musíme ponechat ve čtverci $n \times n$, aby při pohledu z libovolného směru vypadal jako celý! Zdá se zřejmé, že pro sudé n to bude $2 n$, pro liché n pak $2 n-1$, ale dokažte to!

Úloha 10 - Patnáctka

Doc. Zdeněk Dvořák:
Vezměme si číslo $X=I+R$, kde

- I udává počet inverzí příslušné permutace p čísel $1,2, \ldots, 15$. Inverze je dvojice čísel (a, b), kde $a>b$ a přitom $p(a)<p(b)$, tedy a je v permutaci před b.
- R udává číslo řádku, na němž je volné poličko.

Jak snadno nahlédneme rozborem jednotlivých tahů, parita tohoto součtu je invariantní vzhledem k libovolnému tahu. Ve výsledné uspořádané pozici je hodnota $X=0+4=4$, tedy sudá. Je-li v některé pozici hodnota X lichá, nelze zřejmě tuto pozici vyřešit.

Dobrých i špatných pozic je stejný počet, tedy $\frac{1}{2}$ všech možností.
Postupným skládáním jednotlivých řad po poněkud zdlouhavém rozboru dospějeme k tomu, že každá situace, v níž je hodnota invariantu sudá, je řešitelná.

Pozn. Autor k řešení přiložil dokument obsahující výpisy řešitelných pozic, tento však pro nedostatek místa nebudeme přetiskovat. Pokud by chtěl někdo tento výpočet zopakovat, můžete použít např. prohledávání do šířky. Připravte se ale, že možných pozic je velice mnoho.

Úloha 11 - Tomášův obvod

Doc. Zdeněk Doơ̆ák:
Využijeme toho, že vzdálenost průsečíku dvou tečen ke kružnici od obou bodů dotyku je shodná a z obrázku vidíme, že obvod trojúhelníka je $6+(4+x)+(10-x)=20 \mathrm{~cm}$.

Adresa redakce:

Tomás Brauner, A1721
VŠK 17. listopadu
Pátkova 3
18200 Praha Holešovice

[^0]: ${ }^{1}$ Což, by bylo potřeba dokázat.

[^1]: * počet pozic

