M\&M číslo 3 ročník IV

Ahojte řešitelé!

První poznámka se týká soustředění. Jak jste si jistě všichni v̌̌imli, neuskutečnilo se. Bylo to kvǔli nezájmu účastníkủ. V daném termínu nám došlo asi 12 přihlášek, dlooouho po termínu (ač jsme na to upozorňovali) asi další 4 přihlášky. Celkem bylo potřeba zaplnit chaloupku o kapacitě asi 25 lidí. Snad se vás přísitě přihlásí víc a hlavně difive.

Letní konferenci plánujeme na počátek prázdnin, protože v době před prázdninami je neobyčejně narváno (olympiády, olympiádní soustředění, soustředění korespondenčních seminářů, maturity, zkouškové,...) Uvažujte už nyní, zda byste se chtěli účastnit. Konference proběhne pravděpodobně v přírodě na nějaké lesní chatě.

V první sérii jsme vyhlásili soutě̌̌ o logo časopisu. Bylo by tedy slušné se o tom alespon̆ trochu zmínit. Nejdưležitější naše výtka se týká druhu dodaných obrázků. Poněvadž se jedná o jednuduché logo, které bude možná někdy v budoucnosti zdobit záhlaví časopisu, mělo by se skládat výhradně z několika jednoduchých křivek. Naprosto nepřípustné jsou barevné obrázky, nepraktické jsou také stínované přechody mezi černou a bílou. Logo by mělo bŷt jednoduché a hezké, nehodí se moc složité přeplácané obrázky.

Jistá nejmenovaná řě̌itelka nám poslala mnoho návrhů na logo, které obsahovaly různé zvị̂átka, mimo jiné ptáky. Myslíme si, že kdy̌̆ má semináỷ FKS v logu pterodaktyla, bylo by nemístné je napodobovat.

Všechna loga samož̌ejmě nebyla špatná, ale ještě jsme si žádné nevybrali. Pokud vás múza ještě neopustila, zkuste nám poslat nějaké další návrhy.

Jelikož někteří nejmenovaní čě̛itelé (však on bude vědět kdo) písí články tak, že to po nich pří nejlepší vůli není nikdo schopen přečíst, jsme nuceni napsat několik pokynů, které je třeba dodržet, aby lidé, kteří budou článek číst neutrpěli vážnou duševní újmu

1. Je dǔležité, aby jste pro každé použité púsmenko uvedli, jaká fyzikání veličina se za ním skrývá. (pro některé veličiny se používá více označení (např. W, A pro práci), některá písmenka naopak znamenají více fyzikálních veličin (napǐ. t mư̌̌e znamenat jak čas, tak teplotu, krom toho často se používá více označení stejné veličiny za různých podmínek: t_{1}, t_{2}, \ldots).
2. Zkontrol ujte si, zda odkazy na rovnice, obrázky,. . . odkazují tam, kam mají (je dost pracné toto dohledávat).
3. Je-li význam nějaké veličiny jasny z obrázku, je stejně dobré to výslovně uvést (např. "Význam φ, ϑ viz obr. $3^{\prime \prime}$). Je poměrně nepohodlné čist text a sledovat všechny obrázky - zvláště, je-li jich hodně -, jestli se tam náhodou dané písmenko nevyskytuje.
4. Pokud možno nepoužívat ve stejném textu jedno písmenko pro více proměnných. Pokud upravujete nějaky velice složity vyraz, rovnĕ̌̆ by se slušelo uvést alespon̆ některé mezitvary. Nestačí uvést poznámku: "Jednoduchými úpravami dostaneme", zvlášl pokud tyto úpravy vůbec nejsou jednoduché.

Nêjak se vám zalíbily odpočinkové úlohy - jak snadno zjistíte nahlédnutím do výsledkové listiny. Jsme samozřejmě rádi, že se vám líbí, ale už méně se nám líbí, že kvǔli nim zanedbáváte mnohem zajímavěǰ̌í témata. Proto bude od dalšího kola zyy̌̌en bodový limit na pr̂́spěvky k tématům.

Téma 1 - Neukončená čísla

Bc. Petr Zima: r-adická neukončená čísla

Problém neukončených čísel (dále NČ) jsem zobecnil do libovolné r-adické soustavy. Celou teorii buduji od počátku včetně zavedení nových definic sčítání a násobení, které se ukázaly býti vhodnějǔí; jsou samož̌ejmẽ ekvivalentní s definicí pǔvodní. Některé důkazy jsou uvedeny na konci textu, aby nerušily plynulost vŷkladu.

V článku je použito značení NČ velkými písmeny a celých čísel písmeny malymi. Pro zkrácení místa jsou na některých místech vynechány kvantifikátory (\exists, \vee). Ze stejných dủvodů je zápis kongruencí zkrácen z původního $a \equiv b(\bmod 10)$ na $a \equiv_{10} b$. Článek je rozdělen do 5 částí:
I. Základní vlastnosti NČ
II. Inverzní prvky vzhledem k násobení
III. Odmocniny
IV. Speciální py̌ípad $r=10$
V. Důkazy

Část 1. Základní vlastnosti NC

Definice 1. Neukonĕeným čislem rozumě̌me posloupnost čisel z množiny $\{0,1, \ldots, r-1\}$ pro pevně dané r. Zapisujme $A=\ldots a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}$.

Pro účel zkoumání NČ dále zaved’me pojem Z-číslí A, značeno $[A]_{Z}$.
Definice 2. Z-čislí NC̆ $A=\ldots a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}$ je celé nezáporné cislo definované $[A]_{Z}=\sum_{k=0}^{Z-1} a_{k} \cdot r^{k}$, neboli čislo, jehoz̆ r-adický zápis se shoduje s prvnimi Z ciframi NC゙ A.
Věta 1.1. Pro Z-čislí platí následujicí 2 tvrzení:
(a) posloupnost $\left\{x_{Z} \bmod r^{Z}\right\}_{Z=1}^{\infty}$ tvơ̂̃í Z-číslí nễjakého NC Č, právě tehdy kdyと̌ $(\forall A \leq B \in \mathbf{N}) x_{B} \equiv_{r} x_{A}$. Toto NČ je posloupností jednoznačně určeno.
(b) $A=B \Longleftrightarrow(V Z \in \mathrm{~N})[A]_{Z} \equiv_{r} z[B]_{Z}$.

Dủkaz. Je zřejmý z jednoznačnosti r-adického zápisu.
Díky zavedenému pojmu Z-číslí můžeme vytvơ̌it relativně pf̌irozené definice součtu a součinu.
Definice 3. Sčítání a násobení na množině NČ definujme:
$A+B: \quad(\forall Z \in \mathbf{N})[A+B]_{Z} \equiv_{r^{z}}\left([A]_{Z}+[B]_{Z}\right)$
$A \cdot B: \quad(\forall Z \in \mathbf{N})[A \cdot B]_{Z} \equiv_{r^{z}}\left([A]_{Z} \cdot[B]_{Z}\right)$
Použitím těchto definic snadno dokǎžme věty charakterizující strukturu NČ.
Věta 1.2. (a) NC̆ tvoří komutativní okruh s jednotkovým prvkem. (b) speciálně pro r prvočislo je okruh r-adických NC také oborem integrity.

Dủkaz. Část (a) viz. dodatek, pro názornost zde uvedine pouze dủkaz distributivity:

$$
\begin{aligned}
{[A \cdot(B+C)]_{Z} } & \equiv_{r^{z}}[A]_{Z} \cdot[B+C]_{Z} \equiv_{r^{z}}[A]_{Z} \cdot\left([B]_{Z}+[C]_{Z}\right) \equiv_{r^{z}} \\
& \equiv_{r^{z}}[A]_{Z} \cdot[B]_{Z}+[A]_{Z} \cdot[C]_{Z} \equiv_{r^{z}}[A \cdot B]_{Z}+[A \cdot C]_{Z} \equiv_{r^{z}}[A \cdot B+A \cdot C]_{Z},
\end{aligned}
$$

a podle V1.1 (b) platí $A \cdot(B+C)=A \cdot B+A \cdot C$ q.e.d. Pro dủkaz části (b) dokaz̆me nejprve následující Lemma 1.
Lemma 1. $(\forall Z \in \mathbf{N}) r^{Z} \mid[A]_{Z} \Longleftrightarrow A=0$.
$r^{Z} \mid[A]_{Z} \Longleftrightarrow[A]_{Z} \equiv_{r^{z}} 0$ a podle V1.1(b) $A=0$. q.e.d.
Dükaz (b). Provedeme sporem. Předpokládejme, že $(\exists A, B \neq 0) A \cdot B=0$.
Potom podle Lemmatu 1 (jelikož $A, B \neq 0)(\exists X, Y \in \mathbf{N}) r^{X} X[A]_{X} \& r^{Y} X[B]_{Y}$, a tedy vzhledem k tomu, že r je prvočíslo, musí platit $r^{X+Y} \backslash\{A \cdot B]_{X+Y}, \operatorname{což}$ je ve sporu s Lemma 1 a předpokladem $A \cdot B=0$. q.e.d.

Následuje velmỉ důležitá věta převádějící r-adická N Č na K-tici $N C$ Č o prvočíselných základech. V těchto základech lze počítat věť̌inu výpočtủ velmi jednoduše. Tento převod je podobny převodu čísla $x \in\{0,1, \ldots, N-1\}$ na K-tici čísel $x_{i} \in\left\{0,1, \ldots, a_{i}-1\right\}$, kde $\prod_{i=1}^{K} a_{i}=N$, ktery znají řě̌itelé loňského ročníku jakožto modulární aritmetiku.

Při tomto př̌evodu musejí být jednotlivá a_{i} po dvou nesoudělná čísla a pak existuje vzájemně jednoznačné zobrazení těchto dvou množin na sebe. Toto zobrazení zachovává aritmetiku, takže např. místo složitého násobení stačí pouze velká čísla x, y převést na několik menších čísel x_{i}, y_{i}, která mezi sebou snadno znásobíme na z_{i}, jehož opačným převodem získáme výsledek Z.

Věta 1.3. Necht' $r=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{n}^{\alpha_{n}}$ je kanonický rozklad r. Potom okruh r-adických neukončených čisel (dále NC_{r}) je izomorfnís okruhem uspořádaných n-tic $\left(A_{P_{1}}, A_{P_{2}}, \ldots, A_{P_{n}}\right)$, kde $(V K) A_{P K}$ je obor integrity $\mathrm{NC}_{\mathrm{PK}}$. Tyto n-tice se sčítají a násobí po sloz̆kách.

Důkaz. Provedeme jej nalezením zobrazení $f\left(A_{r}\right)=\left(A_{p_{1}}, A_{p_{2}}, \ldots, A_{p_{n}}\right)$, které jednotlivé prvky NČir převede na prvky okruhu n-tic.

Zobrazení f definujme takto: $\left[A_{F K}\right]_{Z \cdot \alpha_{K}} \equiv[A]_{Z}\left(\bmod p_{K}^{Z \cdot \alpha_{K}}\right)$ pro $K \in\{1,2, \ldots, n\}$. Podle V1.1(a) jsou $A_{F K}$ jednoznačně definována, takže f je zobrazení. Na druhou stranu podle Čínské zbytkové věty má předchozí soustava kongruencí právě jedno y̌ešení na soustavě zbytkủ r^{Z}, které dále splňuje podmínku V1.1.(a), takže A je jednoznačně definováno a tedy f je bijekce. Z definice součtu a součinu je již zřejmé, že obojí se zobrazením zachovává. q.e.d.

K tomuto vysoce matematickému textu si dovolím poznámku, která doufám nebude zatemñujźcí. Tato věta tvrdí, že mám-li např. N \bar{C} vyjádřené v soustavě $10(=2 \cdot 5)$, pak je to ekvivalentní, jako kdybych měl dvé $N \bar{C}-$ jedno v soustavé 2 a druhé soustavě 5. Pro každé $A \in \mathrm{NC}_{10}$ najdu právě jednu dvojici $B \in \mathrm{NC}_{2}, C \in \mathrm{NC}_{5}$ a naopak pro každou dvojici B, C najdu právě jedno odpovídajúcí A. Toto zobrazení z jedné množiny na druhou navíc zachovává aritmetické operace. Závěrem této úvahy je to, že např. misto hledání odmocniny v soustavě 10 se stačí omezit na hledání odmocnin v soustavách $\{2,5\}$, které jizz dovedeme provést (viz. dále).

Posledně dokázaná věta nám dáva jasnou představu o strktữe NČ. Je to komutativní okruh, který je oborem integrity, právę kdy̌̌ $r=p^{\alpha}$, kde p je prvočíslo (pak je opravdu součin nenulových č̌sel číslo nenulové). Dále snadno najdeme netriviální dělitele nuly - jsou to n-tice, jejichž alespon̆ jedna složka je nulová (vynásobíme-li ji po složkách s jinou n-ticí, která má nuly na opačných místech, dostaneme nulovou n-tici, coz̆. je podle Lemma 1 nula). Dále zde máme jednoznačný postup pro đ̛ešení rovnic - obvyklými metodami rovnici vy ̌̌ešíme v oborech integrity $\mathrm{NC}_{\mathrm{pK}}$ a libovolná kombinace ̌̌ešení v $\mathrm{NC}_{\mathrm{PK}}$ bude řešením v $N \mathrm{C}_{r}$.

Část 2. Inverzní prvky vzhledem k násobení

Problematika inverzních prvků byla již pro $r=10$ uspokojivě vyřešena a tak jen pro úplnost uvádím následující analogické tvrzení.
Věta 2.1. K danému $N \check{C} A$ existuje $A^{-1}: A A^{-1}=1 \Longleftrightarrow\left(a_{0}, r\right)=1$.
Dále uvedu výpočet a^{-1} pro $a \in \mathbf{N}$, nebof̉ publikované tvrzení není správné. Kromě toho toto tvrzení platí i pro obecné $r \neq 10$.
Věta 2.2. Necht́ je dáno $A=a \in \mathbf{N}$ a platí $\frac{a-1}{a}=0, \overline{b_{1} b_{2} \ldots b_{n}} . \operatorname{Pak} A^{-1}=\overline{b_{1} b_{2} \ldots b_{n_{T}}}+1$.
Dủkaz. Vezměme předpoklad $a \cdot 0, \overline{b_{1} b_{2} \ldots b_{n}}=a-1$. Vynásobíme-li tuto rovnici r^{n} a odečteme-li rovnici pủvodní, dostaneme $a \cdot b_{1} b_{2} \ldots b_{n}=(a-1)\left(r^{n}-1\right)$. Pro jistotu zopakujme označení $[A]_{z} \equiv_{r^{z}}$ a a hlavně $\left[\overline{b_{1} b_{2} \ldots b_{n}}\right]_{k \cdot n} \equiv_{r^{k \cdot n}}$ $\sum_{j=0}^{k-1} r^{j n} \cdot b_{1} b_{2} \ldots b_{n_{T}}$. Dosazením do součinu $a \cdot \overline{b_{1} b_{2} \ldots b_{n T}}$ dostaneme:
$\left[A \cdot \overline{b_{1} b_{2} \ldots b_{n_{T}}}\right]_{k \cdot n} \equiv_{r^{k \cdot n}}[A]_{k \cdot n} \cdot\left[\overline{b_{1} b_{2} \ldots b_{n T}}\right]_{k \cdot n} \equiv_{r^{k \cdot n}} a \cdot \sum_{j=0}^{k-1} r^{j n} \cdot b_{1} b_{2} \ldots b_{n_{T}}=$

$$
=\left(a \cdot b_{1} b_{2} \ldots b_{n}\right) \cdot \sum_{j=0}^{k-1} r^{j \cdot n}=(a-1)\left(r^{n}-1\right) \cdot \frac{r^{k \cdot n}-1}{r^{n}-1}=(a-1)\left(r^{k \cdot n}-1\right) \equiv_{r^{k \cdot n}} 1-a .
$$

Použitím V1.1(b) dostáváme, že $A \cdot \overline{b_{1} b_{2} \ldots b_{\pi}}=1-A$. Pak je zřejmé, ̌̌e $A \cdot\left(\overline{b_{1} b_{2} \ldots b_{n}}+1\right)=A \cdot \overline{b_{1} b_{2} \ldots b_{n}}+A=$ $1-a+A=1$. q.e.d.

Nyní jě̌tě ukáži, že tvrzení Bc. Luboše Dostála "Výpočet inverzního čísla pro čísla přirozená" platí pouze pro $a=r+1=11_{r}$. Tvrzení jsem pochopil (redakce taky) takto: $A^{-1}=B=\overline{b_{1} b_{2} \ldots b_{n}} b_{0_{r}}$, kde $b_{0} \equiv_{r} a_{0}^{-1}$, $d=0, \overline{b_{1} b_{2} \ldots b_{n T}}=\frac{b_{0}}{a}$.

Analogicky dǔkazu V2.2 dostaneme $\left[A \cdot \overline{b_{1} b_{2} \ldots b_{n}}\right]_{k \cdot n} \equiv_{r^{\star} \cdot n}-b_{0}$ a tedy platíl $A \cdot B=A \cdot\left(\overline{b_{1} b_{2} \ldots b_{n}} 0_{T}+b_{0}\right)=$ $-r b_{0}+a b_{0}=(a-r) b_{0}$. Aby bylo $A B=A A^{-1}=1$, musí být $(a-r) b_{0}=1$, což nastává pro $a=r+1=11_{r}$. q.e.d.

Ćást 3. Odmocniny

V této části se omezím na hledání odmocnin v oborech integrity NC_{p}. Získané poznatky pak bude možno pomocí V1.3 aplikovat na libovolný okruh $\mathrm{NC}_{\mathbf{r}}$. Nejprve zde ukã̌̌i dvě důležité věty o kvadratických kongruencích, které pak poslouží pro hledání odmocnin v NČ.

Každou větu je nutno vyslovit a dokázat ve dvou případech - pro lichá prvočísla a pro prvočíslo 2 . Je to způsobeno tím, že hledáme druhou odmocninu. Kdy bychom vyšetřovali obecně n. odmocninu, museli bychom vyšety̌it zulást fí pứpad $p \mid n$.

Věta 3.1. Necht' p je liché prvočíslo. Potom kongruence $x^{2} \equiv_{p^{z}} a,(a, p)=1, Z \in \mathrm{~N}$ má reešení, právě když má řešení kongruence $x^{2} \equiv_{p} a$. Rešení jsou prípadně dvě: $x a-x$.

Vĕta 3.2. Kongruence $x^{2} \equiv_{2^{z}} a,(a, 2)=1, Z \in \mathbf{N}, Z \geq 3$ má řešení, právě kdy̌̌ má řešení kongruence $x^{2} \equiv_{8} a$, což nastává právě pro $a \equiv_{8} 1$. Řešení jsou případnẽ čtyři: $\pm x, 2^{Z-1} \pm x$.

Důsledkem těchto tvrzení jsou následující věty o odmocninách:
Věta 3.3. Necht' p je liché prvočíslo. Potom rovnice $X^{2}=A,\left(a_{0}, p\right)=1$ má v NC_{p} řešení, právě když má řešení kongruence $x^{2} \equiv_{F} a_{0}$. Řešení jsou případně dvě: $X a-X$.
Důkaz. Řě̌it rovnici $X^{2}=A$ znamená řešit soustavu kongruencí $(\forall Z \in N) x_{Z}^{2} \equiv_{p z}[A] z$. Podle V3.1 má každá z těchto kongruencí 2 řešení: x_{Z} a $-x_{Z}$, právě kdy̌̌ má řešení $x^{2} \equiv_{F}[A]_{z} \equiv_{p} a_{0}$. Dále zřejmě platí: ($V M \leq N \in$ N) $x_{N}^{2} \equiv_{p^{M}}[A]_{N} \equiv_{p^{M}}[A]_{M}, \& x_{N} \not \equiv_{p^{M}}-x_{N}$, takž̌ musí platit: $x_{N} \equiv_{p^{M}} \pm x_{M}$, tedy při vhodné volbě $x_{N} \equiv_{p^{M}} x_{M}$ a podle V1.1(a) určují posloupnosti x_{Z} a $-x_{Z} Z$-čislí nĕjakých NC̆, která pak řeší rovnici $X^{2}=A$. q.e.d.

Věta 3.4. Rovnice $X^{2}=A,\left(a_{0}, 2\right)=1$ má v $N C_{2}$ řešení, právě když má řešení kongruence $x^{2} \equiv_{8}[A]_{3}$, což nastává právě pro $[A]_{3} \equiv_{8} 1$. Řešení jsou prípadně dvě: X a $-X$.
Důkaz. Řešit krovnici $X^{2}=A$ znamená řešit soustavu kongruencí $(\forall Z \in \mathbb{N}) x_{Z}^{2} \equiv_{2^{z}}[A] Z$. Omezme se na $Z \geq 3$. Podle V3.2 má každá z těchto kongruencí 4 řešení $\pm x_{Z}, 2^{Z-1} \pm x_{Z}$, právě kdy̌̌ má řešení $x^{2} \equiv_{8}[A]_{z}{ }_{8}[A]_{3}$. Dále platí: $(\forall M<N \in \mathbf{N}) 2^{N-1} \pm x_{N} \equiv_{2^{M}} \pm x_{N} \not \equiv_{2^{M}} \mp x_{N}$, takže zbytky $\pm x_{N}, 2^{N-1} \pm x_{N} \bmod 2^{M}$ probihají jen dvě řešení kongruence $x_{M}^{2} \equiv_{2^{M}}[A]_{M}$. Necht to jsou $\pm x_{M}$. Soustava má tedy jen dvě řešení, pro která platí ($\mathrm{V} M \leq N \in \mathbf{N}$) $x_{N} \equiv_{2^{M}} x_{M}$, a tedy podle V1.1(a) určují nějaká $N C$, která řeší rovnici $X^{2}=$ A. q.e.d.

Nyní snadno rožsírírime i na čísla soudělná s r.
Věta 3.5. Necht' $A \neq 0$. Potom A se dá jednoznačně zapsat ve tvaru $A=B \cdot p^{\beta}, k d e p=r$ je prvočislo a $\left(b_{0}, p\right)=1$. Řešením rovnice $X^{2}=A$ jsou právě všechna $X=Y \cdot p^{\gamma}$, k de $Y^{2}=B$ a $2 \gamma=\beta$ (to předpokládá, že $2 \mid \beta$).

Dủkaz. První část věty vyplývá z Lemmatu dủkazu V1.2(b) a druhá část je jejín triviálním dủsledkem.
Nyní můžeme také dokázat následující tvrzení o uspoľádání NC_{p}, které je další důležitou vlastností $\mathrm{NČ}$:
Věta 3.6. NC_{P} se nedají uspořádat $\Longrightarrow \mathrm{NC}_{\mathrm{P}}$ nejsou izomorfnís žádným podoborem integrity \mathbf{R}.
Důkaz. Je-li $p=2$, pak podle V3.4 $(\exists X) X^{2}=-7$. Je-li p liché, pak podle V3.3 $(\exists X) X^{2}=1-p$. Vobou případech dostáváme spor s uspořádáním, nebot kă̌dé uspořádání musí spln̆ovat ($V X$) $X^{2} \geq 0$. q.e.d.

Zjistili jsme, ̌̌e existují i odmocniny ze záporných čísel (pro $p=4 k+1$ je prvkem NC_{P} prî́mo $\imath=\sqrt{-1}$), a tak zbŷvá otázka, zda jsou $N C_{p}$ izomorfní s nĕjakým podoborem integrity množiny C komplexních čísel.

Pokud by chtă někdo namítnout, že $-7=\overline{999} 3$ a to mưžeme zadefinovat jako kladné, pak by to byl spor s tim, Že $X>0 \&-X>0$.

Část 4．Speciální případ $r=10$

Okruh NC_{10} je podle V1．3 izomorfní s okruhem uspơ̌ádaných dvojic（ A_{2}, A_{5} ）$\in \mathrm{NC}_{2} \times \mathrm{NC} \check{C l}_{5}$ ．Netriviální dělitelé nuly tedy jsou tvaru $\left(A_{2}, 0\right)$ a（ $0, A_{5}$ ）pro libovolná $A_{2} \in \mathrm{NC}_{2}, A_{5} \in N \mathrm{C}_{5}$ ．（pokud byste si je chtěli vyčislit， musîte pro néjaké A_{2}（resp．A_{5} ）počitat dané A_{10} podle činské zbytkové věty）．

Kvadratické rovnice tvaru $(X-A)(X-B)=0$ mají na $\mathrm{NČ}_{1} 0$ čtyři ̛̌ě̌ení $\left(A_{2}, A_{5}\right),\left(A_{2}, B_{5}\right),\left(B_{2}, A_{5}\right)$ ， $\left(B_{2}, B_{5}\right)$ ，kde A_{2}, B_{2} a A_{5}, B_{5} jsou řešení na oborech integrity NC_{2} a $N \check{C}_{5}$ ．Speciálně rovnice $X^{2}=X$ má na oborech integrity $\mathrm{NC}_{2}, \mathrm{NC}_{5}$ ̛̌ešení 0,1 ，takと̌e řešení na NC_{10} jsou：

$$
\begin{array}{ll}
\left(0_{2}, 0_{5}\right)=\ldots 0000_{10} & \left(1_{2}, 0_{5}\right)=\ldots .918212890625_{10} \\
\left(1_{2}, 1_{5}\right)=\ldots .0001_{10} & \left(1_{2}, 0_{5}\right)=\ldots .081787109376_{10}
\end{array}
$$

Inverzní prvek existuje podle V2．1 k číslům，která končí cifrou nesoudělnous 10，tedy konkrétně $1,3,7$ nebo 9.

Rovnice $X^{2}=A,\left(a_{0}, r\right)=1$ má ч NC_{2} ̛̌ešení，právě kdyと̆ $[A]_{3} \equiv_{8} 1$ ，a v NC_{5} právě kdyと̌ $a_{0} \equiv_{5} \pm 1$ ，podle V3．3．a V3．4．V NČ ${ }_{10}$ potom $\exists \sqrt{A}$ ，právě kdyと̆ $A=B \cdot 4^{\alpha} \cdot 25^{\beta}$ ，kde $[B]_{3} \equiv_{40} 1$ nebo 9 ，pro nedělitele nuly．Odmocniny jsou pro nedělitele nuly čty̛̌i $\left(\pm \sqrt{A_{2}}, \pm \sqrt{A_{5}}\right)$ ，pro netriviální dělitele nuly dvě（ $\pm \sqrt{A_{2}}, 0_{5}$ ）nebo（ $\left.0_{2}, \pm \sqrt{A_{5}}\right)$ a pro nulu jediná（ $0_{2}, 0_{5}$ ）．Existují tedy i netridaiční odmocniny，napǔ．：

That＇s all．

Část 5．Důkazy

Věta 1．2．（a）NČ tvoří komutativní okruh s jednotkovým prvkem．Dưkaz tohoto tvrzení sestává z dưkazủ komu－ tativity a asociativity obou operací（sčitání a násobení），existenci nulového a jednotkového prvku vzhledem k těmto operacím，existenci inverzního prvku vzhledem ke sčitání（POZOR，nikoliv násobení）a dủkazu distributivity těchto 2 operaci．

Jedná se bez výjimky o naprosto mechanické důkazy bez myšlenky，které se zapísí stejně jako důkaz distri－ butivity uvedeny v textu článku．

Věta．Činská zbytková věta：Soustava kongruencí $x \equiv_{m_{1}} a_{1}, x \equiv_{m_{2}} a_{2}, \ldots, x \equiv_{m_{n}} a_{n}, k d e m_{1}, m_{2}, \ldots, m_{n}$ jsou po dvou nesoudělná čísla，má na soustavě zbytkủ mod $m_{1} m_{2} \cdots m_{n}$ právě jedno řešení．

Dủkaz．Indukcí podle n：
I．$n=1, x \equiv_{m_{1}} a_{1}$ ，není co ̛̌ě̌it．
II．$n=k$ ．Soustava $x \equiv_{m_{1}} a_{1}, x \equiv_{m_{2}} a_{2}, \ldots, x \equiv_{m_{k}} \boldsymbol{a}_{k}$ má jedno ̛̌ě̌ení $x \equiv_{m} \boldsymbol{a}$ ，kde $m=m_{1} m_{2} \cdots m_{k}$ ． Kongruence $x \equiv_{m_{k+1}} a_{k+1}$ má na soustavě zbytků $\bmod m \cdot m_{k+1}$ celkem m řešení $n \cdot m_{k+1}+a_{k+1}$ ，pro která platí：$\left(m, m_{k+1}\right)=1 \Longrightarrow\left(n_{1} \not \equiv m n_{2} \Rightarrow n_{1} m_{k+1}+a_{k+1} \not \equiv \equiv_{m} n_{2} m_{k+1}+a_{k+1}\right)$ ，takže $n m_{k+1}+a_{k+1}$ pro $n \in\{0,1, \ldots, m-1\}$ probíhá úplnou soustavu zbytků mod m ，na které má kongruence $x \equiv_{m} a$ jedno と̌ešení．q．e．d．
Věta 2．1．K danému $N \check{C} A\left(\exists A^{-1}\right) A A^{-1}=1 \Longleftrightarrow\left(a_{0}, r\right)=1$ ．
Důkaz．Pokud $\left(a_{0}, r\right)=d \not \backslash 1 \Rightarrow(V B) d \mid A B \nmid 1 \Rightarrow\left(\nexists A^{-1}\right) A A^{-1}=1$ ．Na druhou stranu pokud $\left(a_{0}, r\right)=1$ ，má každá z lineárních kongruencí $x_{Z} \cdot[A]_{Z} \equiv_{T z} 1$ jediné řešení $x_{Z} \equiv_{r z}[A]_{Z}^{-1}$ ．Dále zřejmě platí：$(\forall M \leq N \in \mathbf{N}) x_{N} \equiv_{T M} x_{M}$ ， takž̈e podle V1．1（a）$(\exists X)[X]_{Z}=x_{z}$ a tedy $A X=1$ ．q．e．d．

Věta 3．1．Nechlt p je liché prvočíslo．Potom kongruence $x^{2} \equiv_{p^{z}} a,(a, p)=1, Z \in \mathbf{N}$ má řešení，právě když má řešení kongruence $x^{2} \equiv_{p} a$ ．Řešení jsou případně dvě：x a $-x$ ．
Důkaz．Indukcí podle z：
1．$Z=1, x^{2} \equiv_{p} \boldsymbol{a}$ má 0 nebo 2 y̌ešení，protože \mathbf{Z}_{p} je těleso．
II. $Z=k, x^{2} \equiv_{p^{k}} a$ má 2 y̌e ̌̌ení $\pm x_{k}$. Rešení kongruence $x^{2} \equiv_{p^{k+1}} a$ bude tvaru $x_{k+1}=x_{k}+y \cdot p^{k}$. Pro y dostáváme lin. kongruenci:

$$
\begin{array}{rlr}
x_{k}^{2}+2 x_{k} y p^{k}+y^{2} p^{2 k} & \equiv_{p^{k+1}} a & /: p^{k} \\
2 x_{k} y & \equiv_{p} \frac{a-x_{k}^{2}}{p^{k}} & p \nmid 2, p \nmid x_{k} \Leftarrow(a, p)=1 \\
y & \equiv_{p} x_{k}^{-1} 2^{-1}\left(\frac{a-x_{k}^{2}}{p^{k}}\right) &
\end{array}
$$

Pro každé x_{k} dostaneme tedy jedno y. Zřejmě pro $x_{k_{1}}=-x_{k_{2}}$ dostaneme $y_{1}=-y_{2}$, a řešení tedy budou $\pm x_{k+1}$. q.e.d.

Pozn. Právě uvedený dủkaz by šel snadno zobecnit i pro řešení $x^{n} \equiv_{p} z$ a, přičemž bychom museli opět jako zvláštní případ vyjmout $p \mid n$.

Věta 3.2. Kongruence $x^{2} \equiv_{2^{z}} a,(a, 2)=1, Z \in \mathrm{~N}, Z \geq 3$ má řešení, právě když má řešení kongruence $x^{2} \equiv_{8} a$, což nastává právě pro $a \equiv_{8} 1$. Řeš̌ení jsou připadně čtyři: $\pm x, 2^{Z-1} \pm x$.

Dủkaz. Indukcí podle z :
I. $Z=3,1^{2} \equiv_{8} 3^{2} \equiv_{8} 5^{2} \equiv_{8} 7^{2} \equiv_{8} 1$. Máme tedy dvě dvojice řešení $\pm 1,2^{2} \pm 1$.
II. $Z=k,\left(2^{k-1} \pm x_{k}\right)^{2} \equiv_{2^{k+1}} x_{k}^{2} \pm 2^{k} x_{k} \equiv_{2^{k+1}} x_{k}^{2}+2^{k} \Longrightarrow$ právě jedna z dvojic $\pm x_{k}, 2^{k-1} \pm x_{k}$ Y̌ě̌í ì kongruenci $x^{2} \equiv_{2^{k+1}} a$, označme ji $\pm x_{k+1}$. Dále se snadno přesvědčíme, že i zbylá dvě ̛̌ě̛ení mod 2^{k+1} splňujíćć $x \equiv_{2^{k}} \pm x_{k+1}$, totiž $2^{k} \pm x_{k+1}$, řeší: $\left(x+2^{k}\right)^{2} \equiv_{2^{k+1}} x^{2}+2^{k+1} x+2^{2 k} \equiv_{2^{k+1}} x^{2}$. q.e.d.
Tímto dưkazem konč̌̆ tento př̆spěvek. Jako redaktor bych k němu chtěl dodat pár vécí. Za celou dobu, co opravuji seminăr̆, jsem se nesetkal s tak dưkladně zpracovany̆m článkem. Vše, co jsem zde vysázel, je témér̆ doslovný přepis autorova rukopisu, na některých místech jsem pouze (kurzívou) vysázel vysvětlujúcí poznámky. Autorưv přtspěvek je zpracován matematicky naprosto přesně, výklad je prost jakéhokoliv "okecávánt", neobsahuje zaadné nezodpovězené otãzky, prostě je jednoznačně vynikající. Nezbývá mi, nez̆ vám všem popřat, abyste v budoucnu posílali stejně dobře zpracované články.

Zdeněk Dvor̛ăk: Důkaz asociativity a distributivity
Zaved’me si speciální označení $\mathrm{NČ}$: libovolnou posloupnost $a_{0}, a_{1}, a_{2}, \ldots \in \mathrm{~N}$ zobrazme na jedno $\mathrm{NC} A=$ $\ldots A_{2} A_{1} A_{0}$ takto:

$$
\begin{array}{lll}
A_{0}= & a_{0} \bmod 10, & z_{0}= \\
A_{n}=\left(a_{n}+z_{n-1}\right) \bmod 10, & z_{n}=\left(a_{n}+z_{n-1}\right) \operatorname{div} 10 \\
A_{n} 10
\end{array}
$$

Je ž̛ejmé, že číslu $A=\ldots A_{2} A_{1} A_{0}$ odpovídá mimo jiné posloupnost $a_{0}=A_{0}, a_{1}=A_{1}, \ldots$ Pomocí těchto posloupností snadno nadefinujeme součet $C=A+B$ takto: $\boldsymbol{c}_{n}=a_{n}+b_{n}$, kde $a_{i}, b_{i}, \boldsymbol{c}_{i}$ jsou libovolné posloupnosti odpovídajíć daným NČ.

V článku Bc. Luboše Dostála chybí důkaz asociativity násobení a distributivity. Tyto důkazy se velmi snadno dokǎ̌̌í použitím sum. Označme si $A=\ldots a_{2} a_{1} a_{0}$, a stejným způsobem také proměnné B, C, D, E. Necht $D=(A B) C, E=A(B C)$. Pak platí:

$$
\begin{aligned}
\boldsymbol{d}_{n} & =\sum_{i=0}^{n}(A B)_{i} \cdot c_{n-i}
\end{aligned}=\sum_{i=0}^{n} \sum_{j=0}^{i} a_{j} b_{i-j} c_{n-i},
$$

je vidět, že $d_{n}=e_{n}$, nebol̉ suma se počítá přes všechny trojice $a_{k} b_{l} c_{m}$ takové, že $k+l+m=n$. Sumy se liší pouze zpǔsobem zápisu. q.e.d. Důkaz distributivního zákona je ještě jednoduš̌í́, nebudeme ho zde ani uvádět.

Zdeněk Dvor̛ak: Jsou NC o daném základu oborem integrity?

Víme, že pro pro libovolný základ r jsou r-adická NČ okruhem. Dále víme jsme, že desítková NČ nejsou oborem integrity (existují netriviální dělitelé nuly). Z minulého příspěvku vyplývá, že ($\forall A$) ($\exists A^{-1}$) $\Leftrightarrow\left(a_{0}, r\right)=1$. Je zřejmé, že pro prvočíselny základ soustavy r existuje inverzní číslo ke každému A, které nekončí na nulu.

Vyšetřeme existencì netriviálních dělitelů nuly, tj. $A \neq 0, B \neq 0, A B=0$. Stačí se omezit na A, B nekončící na nulu, je z ̌̌ejmé, že pokud $A=10 C, A B=0 \Rightarrow 10 C B=0 \Rightarrow C B=10$. Jistě musí platit $a_{0} b_{0} \equiv 0 \quad(\bmod r)$. To lze splnit pouze pro r složené. Pro vyธ̌̌í Y̌ády musí být splněna podmínka

$$
\begin{gathered}
c_{n}=0 \equiv \sum_{i=0}^{n} a_{i} b_{n-i}+z_{n} \quad(\bmod r) \\
a_{0} b_{n}+b_{0} a_{n} \equiv-\left(\sum_{i=1}^{n-1} a_{i} b_{n-i}+z_{n}\right) \quad(\bmod r)
\end{gathered}
$$

Neznámé jsou a_{n}, b_{n}, ostatní čísla lze z nǐ̌̌̌ích Y̛ádủ vypočítat. Jak snadno nahlédneme, rovnice má ̛̌ešení právě tehdy, kdyz̆ ($\left.a_{0}, b_{0}, r\right) \mid z$, kde z je pravá strana (nebof́ kongruence se dá zapsat jako $a_{0} b_{n}+b_{0} a_{n}+K r=z$). Tato podmínka bude zcela jistě splněna, pokud a_{0}, b_{0} budou nesoudělná. Takže má-li r alespoň dva prvočíselné dělitele, lze taková a_{0}, b_{0} najít a okruh N Č $_{\mathrm{r}}$ není oborem integrity. Zbývá nám vyšetřit případ $r=p^{n}, p$ je prvočíslo.

Uva ̌̌ume $a_{0} b_{0} \equiv 0 \quad(\bmod r) \Rightarrow a_{0} b_{0}=K r \Rightarrow a_{0}=a \cdot p^{m}, b_{0}=b \cdot p^{b}, p \nmid a, p \nmid b, m+l \geq n, m<n, l<n$, BƯNO $l \geq m$. Pak pro druhé círy A, B platí: $a_{1} b p^{b}+b_{1} a p^{m}+a b p^{m+l} / p^{n} \equiv 0\left(\bmod p^{n}\right)$. Aby toto mělo ̛̌eక̌ení, musí platit $\left(b p^{\bar{b}}, a p^{m}, p^{n}\right) \mid a b p^{m+l-n}$, ale $\left(b p^{b}, a p^{m}, p^{n}\right)=\left(p^{b}, p^{m}, p^{n}\right)=p^{m}$, podle předpokladů tedy $p^{m} \mid p^{m+l-n}$, což nelze, nebot̉ $l<n \Rightarrow l-n<0$. Takže taková a_{0}, b_{0} nelze sestrojit, $\mathrm{NC}_{\mathrm{p}^{\text {n }}}$ nemá netriviální dělitele nuly a tedy je oborem integrity.

Závěr. $\mathrm{NC}_{\mathbf{r}}$ jsou oborem integrity $\Longleftrightarrow r=p^{n}, n \in \mathbf{N}, p$ je prvočíslo. q.e.d.

Zdeněk Dvořak: Rešení rovnice $A X+B=0$
I. Existuje-li A^{-1} (což nastane, pokud a_{0} není dělitelné 2 ani 5), pak celou rovnici tímto číslem vynásobíme a dostaneme jediné ̛̌ešení $X=-B \cdot A^{-1}$. Toto číslo je jediné, což plyne z vlastností komutativního okruhu.
II. Pokud je poslední číslice a_{0} dělitelná 2 nebo 5 a poslední číslice b nikoliv, rovnice nemá ̛̌ešení, protože ($V K$) $(K A)_{0}$ je dělitelné 2 nebo 5 .
III. V opačném případě obě čísla A, B jsou dělitelné 2 (resp. 5) a rovnici $A X+B=0$ tedy mǔ̌̌eme pozměnit na $(k M) X+k N=0$. Pokud k není nula ani její dělitel, pak se dá tato rovnice číslem k vykrátit a đ̌ešit rovnici $M X+N=0$. Je tedy nutné prokázat, že žádné z čísel 2,5 není netriviálním dělitelem nuly, a posléze nalézt čísla $M=A / 2, N=B / 2$ (resp. $/ 5$).
Číslo 2 netriviální dělitel nuly není, protože je-li $2 X=0$, pak pro první nenulovou cifru x_{k} platí $2 x_{k} \equiv 0$ $(\bmod 10) \Rightarrow x_{k}=5$ a pro další cifru x_{k+1} musí platit $2 x_{k+1}+1 \equiv 0(\bmod 10)$, což samož̌ejmě nelze.

Analogicky číslo 5 není netriviální dělitel nuly, nebở první nenulová číslice $x_{k} \in\{2,4,6,8\}$, přenos $z_{k+1} \in$ $\{1,2,3,4\}$ a $5 x_{k+1}+z_{k+1} \equiv 0(\bmod 10)$, což evidentně nelze.

Zbŷvá nám nalézt polovinu (resp. pětinu) daného NČ. Platí z ̌̌ejmá rovnost $A / 2=5 A / 10$, takže stačí dané NČ vynásobit 5 (resp. 2) a odstranit počáteční nulu. Takže postupným dělením dokážeme převést rovnici na jing tvar.
V. Tímto postupem však nelze vyřešit všechny rovnice. Existují rovnice, které takto nevy̌̌ešíme, napy̌. ty, ktere souvisejí s netriviálními dělitely nuly. Máme-li rovnici $A X=0$, kde $A \mid 0$, pak stačí nalézt příslušny sdruženy dělitel nuly, ale naším postupem to nevyřešíme, protože A mư̌̌e být dělitelné 2 (resp. 5) donekonečna a postup by nikdy neskončil (viz. ̛̌ešení rovnice $x^{2}=x \mathrm{z}$ minulého čísla),

Náměty k dalšímu bádání. Jsou opravdu všechna čisla z odstavce IV vždy netriviálnímidělitely nuly? Jak rovnice IV rozpoznat a řešit? Snadno nahlédneme, že mají nekonečně mnoho řešení, nebot' všechny násobky řešení X jsou také řešeni.

V NČ $\mathrm{C}_{\mathrm{p}^{\mathrm{n}}}$ nemǔ̌̌e bod IV nastat, jelikož jediné netriviální dělení je dělení číslem p, které ale po n krocích znamená dělení základem soustavy, tj. odstranění počáteční nuly, což nelze pro nenulová čísla opakovat donekonečna Speciálně pro prvočíselný základ je kritérium řešitelnosti rovnice $A X+B=0$ jednoduché: počet nul na zac̆atku B musí být věť̌í nebo rovno počtu nul na začátku A.

Téma 2 - Lednička

Doc. Pavol Habuda: Peltierova lednička

Zaujal mě článek Bc. Tomáše Nečase: Peltierova lednička, tak jsem se pokusil něco spočítat. Předpokládejme, že máme termoelektricky článek s velky̆m součinitelem termoelektrického napětí α. Dále necht̉ má elektrickou vodivost σ a měrnou tepelnou vodivost λ. Předpokládejme, že článek se velmi neochladí, tj. tyto veličing nejsou funkcí teploty.

Ze zákona zachování energie bude platit

$$
\begin{equation*}
Q_{\text {Peltierovo }}=Q_{\text {prostředí }}+Q_{\text {vodivostní }}+Q_{\text {Jouleovo }} \tag{1}
\end{equation*}
$$

Pro jednotlivé složky platí: $Q_{J}=\frac{1}{2} R I^{2} t$ - polovina tepla jde k chladnějšímu a polovina k teplejšímu konci. Dále

$$
Q_{\mathrm{vod}}=\frac{\lambda_{1} S_{1}+\lambda_{2} S_{2}}{l} \Delta T t=\Lambda \Delta T t
$$

kde ΔT je rozdíl teplot, S_{i} prư̌̌ez a l délka sloupků. $Q_{\text {Peltierovo }}=\alpha I T_{2} t\left(T_{2}>T_{1}\right)$. Odtud dostáváme

$$
\begin{equation*}
\frac{Q_{\text {prostředi }}}{t}=P=\alpha I T_{2}-\Lambda \Delta T-\frac{1}{2} R I^{2} \tag{2}
\end{equation*}
$$

Ted zavedeme účinnost $\eta=\frac{P}{P^{\prime}}$, kde $P^{\prime}=R I^{2}+\left(\alpha_{1}-\alpha_{2}\right) \Delta T I$ je př̌íkon chladícího článku. Dosazením dostáváme

$$
\begin{equation*}
\eta=\frac{\alpha T_{2} I-\frac{1}{2} R I^{2}-\Lambda \Delta T}{\alpha \Delta T I+R I^{2}} \tag{3}
\end{equation*}
$$

Určeme ted proud, při kterém dosahuje η maxima:

$$
\begin{equation*}
\frac{d \eta}{d I}=0 \Rightarrow I_{\eta}=\frac{2 \Lambda}{\alpha} \cdot \frac{T_{1}-T_{2}}{T_{1}+T_{2}} \cdot\left[\sqrt{1+\frac{1}{2} \frac{\alpha^{2}\left(T_{1}+T_{2}\right)}{R \Lambda}}-1\right] \tag{4}
\end{equation*}
$$

Úpravami dojdeme ke vztahu

$$
\begin{equation*}
I_{7}=\frac{\alpha \Delta T}{R(k-1)} \tag{4.1}
\end{equation*}
$$

kde k značí odmocninu v rovnici (4). Dosazením do rovnice (3) dostaneme pro maximální účinnost

$$
\begin{equation*}
\eta_{\max }=\frac{T_{2}}{T_{1}-T_{2}} \cdot \frac{k-T_{1} / T_{2}}{k+1} \tag{5}
\end{equation*}
$$

Pro dva polovodičové válečky zapojené podle této teorie pak platí

$$
\begin{equation*}
R \Lambda=\left(\frac{1}{\sigma_{1}} \cdot \frac{l_{1}}{S_{1}}+\frac{1}{\sigma_{2}} \cdot \frac{l_{2}}{S_{2}}\right) \cdot\left(\frac{\lambda_{1} S_{1}}{l_{1}}+\frac{\lambda_{2} S_{2}}{l_{2}}\right) \tag{6}
\end{equation*}
$$

Jestliže $\iota_{1}=l_{2} ; S_{1}=S_{2}$, tak $R \Lambda=\left(\rho_{1}+\rho_{2}\right)\left(\lambda_{1}+\lambda_{2}\right)$.
Předpokládejme ted, že $k \rightarrow 1$. Pak pro napětí článku plyne z (4.1)

$$
U_{\text {刀 }}=\frac{4\left(\rho_{1}+\rho_{2}\right)\left(\lambda_{1}+\lambda_{2}\right) \Delta T}{\alpha\left(T_{1}+T_{2}\right)}
$$

Podívejme se jě̌tě jednou na vztah (5). Vidíme, že $R \Lambda$ musí být minimální, takže je třeba konstruovat články s co nejvěť̌í vodivostí a s co nejmenší tepelnou vodivostí. Já jsem si za svůj článek zvolil $B i_{2} T e_{3}+S b_{2} T e_{3}$ a $B i_{2} T e_{3}+B i_{2} S e_{3}$. Po dosazení konstant $\Delta T=50^{\circ} C ; k-1=37 \cdot 10^{-3}$ (literatura) dostaneme $\eta_{\max }=-0.61=61 \%$. Záporný výsledek vyšel proto, že se jedná o chlazení.

Téma 3 - Rovinné dláždění

Dr. Jan Holeček: Specifikace typů dláždění

Zkusme si navrhnou všechny moz̆né typy dláždění, co nás napadnou, a pak z nich vyházet ty, které mají shodné vlastnosti. Rovina se dá vyplnit trojúhelníky, čtyřúhelníky a šestiúhelníky, klasifikace bude vycházet z tohoto rozdělení.

Trojúhelníky.

1. rovnostranné trojúhelníky,
II. rovnoramenné pravoúhlé trojúhelníky mů̌̌eme rozdělit na 3 izomerie α, β, γ :

III. rovnoramenné trojúhelníky,
IV. pravoúhlé trojúhelníky, mají opět 3 izomerie,
V. obecné trojúhelníky, opět ve 3 izomeriích.

Ctyřúhelníky.

I. čtverce,
II. obdélníky,
III. kosočtverce
IV. kosodélníky,
V. rovnoramenné lichoběžníky,
VI. obecné lichoběžníky, mají 3 izomerie α, β, γ :

Sestiúhelníky.

I. pravidelné,
II. "rovnoramenné", tj. dvě dvojice protęǰ̌ích stran mají všechny stejnou délkou,
III. "kosé", pouze protêjěí strany jsou stejně dlouhé.

Probíral jsem každé jednotlivé z uvedených dlá̌̌dění a studoval, kolik má osových souměrností, zda lze (nêjak) rotovat ve středech stran, středech útvaru, či ve vrcholech. Posunutí jsem nepovažoval za směrodatné, protože nebereme-li v úvahu jen sousedící kostičky, má jich každé nekonečně rozlehlé dláždění nekonečně mnoho (samož̌ejmě jsem mohl brát v úvahu jen sousedící kostičky, je však velmi obtî̌né jednoznačně určit, které to jsou a které ne).

Poznatky jsem poskládal do přiložené tabulky.
PY̛i dělení do skupin jsem bral v úvahu různý počet jen u osových souměrností, u RSỨ a RV jsem počet psal jen orientačně, rozlišoval jsem jen nulu a ostatní, zápis RSS o rozlišování jasně vypovídá (stẹjně lze rotovat jen o 180°); konec koncủ počet RSÚ a RV by stejně rozhodoval jen v několika málo případech.

Pozn. Použitá dláždění považuji za zák ladní, protože namátkově zkoušené tvary složitější šly všechny na tyto zjednoduŠit BUNO.

Dospěl jsem ke skupinám a, b, \ldots, p (viz. tabulka), myslím tedy, že existuje 16 tříd dláždění "neposunutého" typu. Do 17. třídy (q) jsem souhrně zǎ̛adil všechna dláždění, jejichž kostičky tvơ̆í nezávislé pásy, a ty jsou posunuty (kostičky nemají společně vrcholy) o konstantní vzdálenost d. Osmnáctou třídu (r) pak tvoří "parkety". Obě třídy jsou nakresleny na následujícím obrázku.

Závěr. Celkem tedy existuje 18 tříd dláždění.

Poznámka redakce. Do které skupiny tedy patři dlážděni vedle tabulky?
Téma 4 - Dělení lupu
Bc. Lenka Zdeborova, Robert Vácha: Dělení lupu 1
Mějme skupinu N lupičư, kteří si mají rozdělit lup o hodnotě n. Nechf́ dále je lup dělitelný na N částí bez znehodnocení. Algoritmus dělení je tento:
(a) Zloději si rozlosují jednoznačné pořadí.
(b) Ten, kterýy si podle pỡadí bude vybírat poslední, rozdělí lup na N částí.

Pokud by lup rozdělil na nestejné díly, neměl by jistotu, že na něj zbyde alespoň $\frac{1}{N}$ lupu, a proto lup ve vlastním zájmu rozdělí na stejné díly.

Tento algoritmus bude fungovat, jen když se např. prwnís posledním nedomluví, aby poslední na nějakou hromádku dal víc, tu by si první vybral a pak by se spolu rozdělili.

Takového podvádění se mư̌̌eme zbavit, kdy̌̌ po rozdělení hromádky očíslujeme a každy z lupičủu si vylosuje číslo hromádky, která mu připadne.

Doc. Jan Mysliveček: Podělme se (ne)přátelé

Mějme N lupičư a poklad o hodnotě 1 . Nejpr ve budeme uvažovat, že loupežníci netvơ̌í spolky s cílem okrást ostatní, pouze se každy snaží okrást ostatní pro svĭj zisk. Pro jednoduchost předpokládejme, že poklad lze rozdělit právě na N dílů. První loupežník rozdělí lup na dvě části. V první bude poklad hodnoty $\frac{p}{N}$ a v druhé $1-\frac{p}{N}$. Tyto čísti definitivně oddělíme (odneseme je aspon̆ 50 m od sebe). Loupežníci se po ̛̌adě začnou rozhodovat, ke které části pŭjdou a to tak, aby tam na ně připadal věť̌í díl lupu. Nechť je $p<\frac{N}{2}$ a je již rozděleno k loupežníkŭ, u první části je jich p. U druhé jich pak je $k-p$. Loupežník s číslem $N-k-1$, tedy ten, ktery je na řadě, půjde k druhé části, protože u první části je poklad na osobu $\frac{1}{N}$, po jeho příchodu by to ale bylo už jen $\frac{p}{N(p+1)}<\frac{p}{p N}=\frac{1}{N}$, zatímco u druhé části na něj čeká po jeho příchodu poklad $\frac{N-p}{N(k-p+1)}$, což je víc než u části první. Z toho plyne, že nakonec bude u první části p loupežníkŭ, zatímco u druhé části $N-p$. Tento postup budeme aplikovat tak dlouho, dokud nebudou všichni účastníci spokojeni, tj. budou mít díl $\frac{1}{N}$.

Důležitę̉ǰ̌í je situace, kdy je poklad dělitelny více méně do nekonečna. Rozdělení, které nebude rovnoměrné bude ale nevýhodné právě pro dělitele, což dokážu sporem. Necht hodnota pokladu v první částije $\frac{p+z}{N}$, kde $0 \leq z<1$. Pak nastane situace, kdy u první hromádky bude p loupežníkŭ, hodnota pokladu v druhé části je $\frac{N-p+(1-z)}{N}$ a neché je u této části $N-p-1$ loupežníků. Je tedy rozděleno $N-1$ loupežníků. Na řadě je dělitel, ale je zřejmé, že na nềj bude čekat poklad o hodnotě menší než $\frac{1}{N}$.

Tohoto by se dalo využít k tomu, aby se k loupežníků dohodlo a okradlo zbytek. PY̌i daném postupu musí byt $k>\frac{N}{2}$. Pak by ale měli jednoduš̌í ten menší zbytek zmlátit a se vším utéct. Myslím si, že všechny, a tedy i tento, algoritmy řex̌í situaci, kdy všichni se chtějí podělit, ale mají strach, že ti ostatní je chtêjí okrást, nedochází tedy ke společným dohodám.

Antonín Lejsek, Bc. Karel Kyrian, Doc. Pavol Habuda: Dělení lupu 2

Pruní lupič rozdělí lup na dvě̌ části a druhy si od nểj jednu vybere. Pak oba rozdělí svŭj díl na tǐi části a třetí si od každého jednu vybere. Je zřejmé, že vždy mưže získat alespoñ $\frac{1}{3}$ lupu, bez ohledu na rozdělení mezi prvním a druhým lupičem. Takto se pokračuje dál až $N-1$ lupičů rozdělí své podíly na N částí a poslední lupič si od každého jednou vybere.

Bc. Karel Kyrian: Důkaz správnosti algoritmu

Tímto způsobem mưže první lupič zřejmě získat pro sebe $\frac{1}{N}$ lupu. Kdy̌̌ rozdělí svŭj podíl vždy přesně na stejné části, ztratí při prvním dělení $\frac{1}{2}$ lupu, při druhém $\frac{1}{3} \cdot \frac{1}{2}$ lupu, po $k-1$ děleních tedy má

$$
1-\frac{1}{2}-\frac{1}{2} \cdot \frac{1}{3}-\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4}-\ldots=1-\frac{1}{1 \cdot 2}-\frac{1}{2 \cdot 3}-\frac{1}{3 \cdot 4}-\ldots-\frac{1}{(k-1) \cdot k}=\frac{1}{k} .
$$

Uvažuj̇me k-tého lupiče. Lupičic před ním necht̃ mají po ̌̌adě $\frac{1}{a_{1}}, \frac{1}{a_{2}}, \ldots, \frac{1}{a_{k-1}}$ lupu, kde $\sum_{i=1}^{k-1} \frac{1}{a_{i}}=1$. Tento lupič si od každého mǔže vybrat minimálně $\frac{1}{k}$ jeho části, tedy celkově $\frac{1}{k}$ lupu. Mǔže tedy mít po $k-1$ dĕleních $\frac{1}{k}$ majetku stejnĕ jako první lupič, a ten mǐ̛̌̌e skončit s $\frac{1}{N}$ majetku, taǩ̌e i tento lupič mưže skončit s $\frac{1}{N}$ majetku. K podvodu nemǔže dojít.

Doc. Pavol Habuda: Dělení kořisti

Složitěǰ̌í je případ, kdy mezi loupežníky je hierarchie, první lupič má dostat N_{1} kořisti, druhy N_{2}, třetí N_{3}, \ldots a posední N_{n} kofisti.

Co se ted' stane, kdy̌̌ přijde $k+1$. lupič. Aby nebyl nikdo škodný, musí platit, že části se přeskupí tak, že všechny aktuální poměry budou stejné jako poměry konečné, tj.

$$
\begin{equation*}
\frac{N_{1}}{N_{1}^{\prime}}=\frac{N_{2}}{N_{2}^{\prime}}=\ldots=\frac{N_{k}}{N_{k}^{\prime}} \tag{1}
\end{equation*}
$$

Určitě platí $N_{1}+N_{2}+\ldots+N_{k}=1$, a zároven̆ $N_{1}^{\prime}+N_{2}^{\prime}+\ldots+N_{k+1}^{\prime}=1$, kde N_{k+1}^{\prime} je díl, ktery získal ($\mathrm{k}+1$)-ní lupič. Také platí

$$
\begin{equation*}
\frac{N_{1}^{\prime}}{N_{k+1}^{\prime}}=\frac{L_{1}}{L_{k+1}} ; \frac{N_{2}^{\prime}}{N_{k+1}^{\prime}}=\frac{L_{2}}{L_{k+1}} ; \ldots \text { atd. } \tag{2}
\end{equation*}
$$

kde L_{k} je konečná hodnota lupičova lupu po všech děleních.
Máme určit, jaky díl si vezme $k+1$. lupič od každého předchozího.

$$
\begin{align*}
& P_{1}=N_{1}-N_{1}^{\prime}=N_{1}-\frac{L_{1}}{L_{k+1}} \cdot N_{k+1}^{\prime} \\
& P_{2}=N_{2}-N_{2}^{\prime}=N_{2}-\frac{L_{2}}{L_{k+1}} \cdot N_{k+1}^{\prime} \tag{P}
\end{align*}
$$

.

$$
P_{k}=N_{k}-N_{k}^{\prime}=N_{k}-\frac{L_{k}}{L_{k+1}} \cdot N_{k+1}^{\prime}
$$

Sečtením těchto rovnic dostaneme

$$
N_{k+1}^{\prime}=\sum_{i=1}^{k} N_{i}-\frac{N_{k+1}^{\prime}}{L_{k+1}} \cdot \sum_{j=1}^{k} L_{j}
$$

Zř̌ejmě $\sum_{j=1}^{k} N_{j}=1$, odkud pro N_{k+1}^{\prime} dostaneme

$$
\begin{equation*}
N_{k+1}^{\prime}=\frac{L_{k+1}}{L_{k+1}+\sum_{j=1}^{k} L_{j}} \tag{3}
\end{equation*}
$$

Dosazením (3) do rovnic (P) dostaneme obecně

$$
\begin{equation*}
P_{i}=N_{i}-\frac{L_{i}}{L_{k+1}+\sum_{j=1}^{k} L_{j}}=N_{i}-\frac{L_{i}}{\sum_{j=1}^{k+1} L_{j}} \tag{4}
\end{equation*}
$$

P_{i} nechti má tvar $\frac{\Pi_{i}}{\Pi_{i}^{\prime}}$. Potom $i-\mathrm{ty}$ loupežník si rozdělí svůj lup na Π_{i}^{\prime} částí a (k+1)-ní loupežník si Π_{i} částí vezme.

Michal Tarana: Nepoctivá spravedlnost
Mějme N lupičů. kteří si mají rovnoměrně rozdělit lup, tj. každý má dostat minimálně $\frac{1}{N}$ lupu. Jeden lupič bude lup dělit. Uvažme, že se chce obohatit o část x, kterou py̌idá k svému dílu. To mưže udělat tak, že z jedné z ostatních částí odebere x, nebo z každé z ostatních částí odebere $\frac{x}{N-1} \mathrm{~V}$ tomto případě si lupiči zabezpečí svůj podíl tak, že nakradou co nejvíc, protože čím víc nakradou, tím ménế jím "dělič" ukradne.

Dále autor navrhuje algoritmus, který umožňuje každému lupiči ovlivnit stav částí natolik, že znemožní jakykoli pokus o podvod ze strany ostatních.
(a) každy z lupičǔ vyčlení z lupu $\frac{1}{N}$ (všechny části budou vedle sebe a budou vypadat stejně)
(b) každý z lupičů všechny části navzájem promíchá (změní jejich pỡadí), samož̌ejmě náhodně
(c) každý z lupičůu změní náhodně pořadí ostatních lupičů
(d) každý lupič si vybere odpovídající část (první lupič první část atd.)

Poznámka opravovatele: Navrhli jste několik způsobů, jak zamezit podvodu ze strany některých lupičů, ale jediny algoritmus (uvedeny v článku Dělení lupu 2) umožňuje každému lupiči nezávisle na ostatních získat pro sebe aspon̆ $\frac{1}{N}$ lupu.

Úloha 4 - Barvení obrazce

Jak se všichni řě̌itelé přesvědčili, je obsah systému obdélníkủ nekonečný: $P=1+1+1+\ldots=\infty$. Natírámeli tento systém obdélníků barvou, spotřebujeme nekonečné množství barvy, protože vrstva nátěru není nekonečně
tenká - v nejlepším případě má barvu alespoñ jedné molekuly. Na druhou stranu objem tělesa vytvořeného z válečků je $V=\pi \sum_{k=0}^{\infty} \frac{1}{2^{k}}=2 \pi$. To samo o sobě jě̌tě není tak divné a není důvod proč by tomu tak nemělo byt.

Uvaと̆ujme ale jinak. Pro zjednodušení úvahy budeme místo s obsahem systému obdélníků pracovat s povrchem tělesa vy tvoř̃eného z válečků; ten je sice veť̌í než obsah systému obdélníků, ale pokud pomocí této úvahy půjde obarvit povrch tohoto tělesa konečným množstvím barvy, pak lze jistě konečným množstvím barvy obarvit i obsah systému obdélníků. Válečky tvořící těleso jsou vyplněny barvou, takže jejich povrch a tedy i povrch celého tělesa je obarven také. Protože válečky tvơ̌ící těleso mají konečny objem 2π, dokážeme obarvit konečným množstvím barvy i povrch tak to vzniklého tělesa a tím pádem dokážeme konečny̆́m množstvím barvy obarvit i systém obdélníků - má menší obsah

Úvaha vede ke sporu s výpočty v první části, proto někde musí být chyba. Ale kde? Samozřejmẽ v úvaze. Uと̌2 27. váleček má průměr menší než molekula barvy, tedy těleso nelze z barvy vytvořit, aniž bychom půlili molekuly. Těleso popsané v úvaze bude tvỡeno pouze 27 válečky a ty rozhodně mají konečny povrch, nicméně tak neobarvíme celé těleso. Tím je zdánlivy paradox vysvětlen.

Úloha 5 - Medvěd a medvědice

Polovina lidí bohužel nepochopila zadání tak, jak bylo míněné, čímž si úlohu značně zesložitili. Za nepřesné zadání se samozřejmě omlouváme a snad se nám podaří pro přístrě se podobných chyb vyvarovat. A ted už ke komentárí Y̌ešení: pro maly časovy okamžík těsně po začátku pohybu vyplyyvá z podobnosti trojúhelníkũ jednoduchá rovnost:

$$
\frac{v_{1} \Delta t}{l}=\frac{v \Delta t}{v_{2} \Delta t}
$$

a odtud

$$
a=\frac{v}{\Delta t}=\frac{v_{1} v_{2}}{l},
$$

což v̌̌ak není nic jiného nežli hledané zrychlení ve směru vektoru v, které je definované jako $a=v / \Delta t$ a v, v_{1} jsou, jak již bylo napsáno, rovnobě̌̌né vektory.

Úloha 6 - Odpočinkové úlohy

Úloha 1. Spojování bodủ
Nepotřebuje komentáx, stačí obrázek.

Úloha 2. Hodináŕ

Antonín Lejsek: Řešení
Pov̧̌imněme si, za jak dlouho se setkají ručičky jdoucí stejným směrem, ale jedna z nich $12 \times$ pomaleji. Pokud je postavíme na stejné místo a pustíme, rychlejší se dostane na stejné místo za 12 hodin $12 \times$, pomalejsí jen jednou. Pomalejší ručička "utíká" rychlejší a tak se za 12 hodin potkají jen $11 \times$. Od spuštění se poprvé potkají za 12/11 hod.

Porovnejme chování pokažených a správně jdoucích hodin. Velké ručičky jdou jedním směrem, jedna $12 \times$ rychleji než druhá. Potkají se za 12/11 hod. Stejně je to s malými ručičkami. Špatně nastavené hodiny budou ukazovat správny čas za $12 / 11$ hod. Tedy v $7: 05$ hod. a $27, \overline{27} \mathrm{~s}$.

Úloha 3. Dělení na 10 dílủ
Tato úloha původně nevyžadovala komentâ̌̆, stačil by správný přehledně nakreslený obrázek, ale Petr Zima si všiml zajímavého problému: Kam pať̌í hranice? " U uvedeného řešení se snadno přesvědčíme, že z hranice nelze vybrat část, která by náležela právě 1 dálu tak, aby disjunktním sjednocením byl celý obrazec."

Úloha 4. Čislo násobené dvěma

Pokud dané číslo existuje ve tvaru $a_{n_{1}} a_{n-1} a_{n-2} \ldots a_{1} 2$, pak platí

$$
\begin{array}{r}
a_{n} a_{n-1} a_{n-2} \ldots \ldots \ldots a_{1}{ }^{2} \begin{array}{r}
\times 2 \\
\hline
\end{array} \begin{array}{r}
a_{n} \quad a_{n-1} a_{n-2} \ldots a_{2} a_{1}
\end{array}
\end{array}
$$

Je ž̌̌ejmé, že $a_{1}=2 \cdot 2=4$, pak $a_{2}=a_{1} \cdot 2=8$ a tak dále, dokud nedostaneme $a_{n}=1$ (samož̌ejmě ještě musí byt přechod z nižsího Y̌ádu roven 0).

Takže nejmenší možné takové číslo je

105263157894736842

210526315789473684

Zadání nových témat

Téma 5. Pokus R. P. Feynmana

Nechali jsme se inspirovat jednou příhodou z autobiografie známého amerického fyzika R. P. Feynmana: To snad nemyslíte vážně? Cituji:

Jednou jsen experimentoval v princetonské cyklotronové laboratoři s dosti otřesným výsledkem. V jedné knize o hydrodynamice se vyskytoval problém, který tenkrát rozebírali všichni studenti fyziky. Problém zní takhle: máte rozprašovač vody na trávniky - kus trubky ve tvaru S, který se mưže otáčet kolem svého středu -, voda střiká ven v pravém úhlu k ose a zpủsobuje otáčení trubky v určitém směru. Kă̌dý ví ve kterém: v opačném, než má tryskající voda. Otázka zní takto: Kdybyste měli jezero nebo bazén - spoustu vody - a ponořili rozprašovač zcela do vody a nasávali jím vodu dovnitř, místo abyste ji střikali ven - kterým směrem se roztočí? Bude se otáčet stejně, jako kdy̌̆ rozprašujete vodu na vzduchu, nebo opačně?

Na první pohled je odpověd’ úplně jasná. Potíž byla v tom, že jedněm bylo jasné, že se bude otáčét takhle, a druhým bylo stejně jasné, že se bude otáčet naopak. VŠichni to tedy rozebírali a pamatuji se, že na jednom seminárí nebo čaji šel někdo k profesoru Johnu Wheelerovi a zeptal se ho: "Jakým směrem si vy myslíme, že se to bude točit?"

Načě̌ Wheeler řekl: "Včera mě Feynman přesvědčil, že se to bude točit jedním směrem. Dneska mě zase přesvědčil, 关e se to bude otáčet právě naopak. Jak se to bude točit zítra - to nevím."

Řeknu vám dủvody, které vás přesvědčío otáčení jedním směrem, a jiné dủvody, které vás přesvědči, že to má být právě naopak.

Prvé zdủvodnění spočívá v tom, 条 kdy̌̆ sajete vodu, tak ji vlastně vtahujete dovnitř tryskou, a tryska se tedy bude pohybovat dopředu, vstřic přicházejíci vodě.

Jednomže prijde někdo jiný a řekne: "Představme si, že rozprašovač držíne nehybně - jaký silový moment k tomu potřebujeme? Když voda tryská ven, tak všichni víme, že musíme tlačit na vněǰ̌sím oblouku trubky, vzhledem k odstředivě sile vody, která její zakřivení sleduje. Kdy̌̌ ted' voda poteče podél stejné křivky, ale opačně, bude pưsobit stejnou odstředivou silou směrem k vněǰ̌símu okraji oblouku. Proto jsou oba případy vlastně totožné a rozprašovač se bude otáčet stejným směrem, ať z něj vodu střikáte, nebo at'ji sajete dovnitř."

Nějakou dobu jsem si s tím lámal hlavu a pak jsem se konečně rozhodl, která z odpovědí je správná, a abycho to prokázal, chtěl jsem provést experiment.

Tady náš vloženy text končí. Pokud vás zajímá, jak to dopadlo, přečtěte si kní̌̌ku. Vaším úkolem je zjistit, jakým směrem se tedy bude trubka točit. Pokud provedete pokus, budeme jen rádi.

Téma 6. Totální destrukce

Toto téma je neobyčejně rozsáhlé, každy mưže napsat příspěvek podle svého vlastního uvažení. Jednou větou bych téma shrnul na: "Studujte destruktivní síly." Studovat mǔžete napǐ.:
(a) jakou silou musíme působit, abychom roztrhli lano; materiál a tloušťku si mưžete zvolit, nebo jaky musí bŷt časový průběh síly, když chce člověk roztrhnout nap̌̌. telefonní seznam,
(b) kolik tabulek skla rozbije kámen o dané hmotnosti m letící danou rychlostí v,
(c) jaká síla je potřebná k ohnutí tyče o tloušice d,
(d) kolik cihel mǔ̌̌e pouhou rukou rozbít šikovný karatista,
(e) obecně co všechno je v čase t schopen zničit jeden jediný člověk (bez použití pomŭcek),
(...) a mnoho dalších nápadů.

Téma můžete studovat teoreticky, nebráníme se však ani praktickým pokusům.

Zadání rekreačních úloh

Příklad 7. Plusy a mínusy

Mějme tabulku 4×4 zaplněnou znaménky $+\mathrm{a}-$. Tato znaménka mư̌̌eme měnit takto: vybereme si libovolng sloupec, Y̌ádek nebo diagonálu (nemusí to být nutně hlavní diagonála) a na této úsečce změníme všechna znaménka na opačná

Na počátku je tabulka plná znamének + kromě jediné buňky: v prvním ̛̌ádku je ve druhém sloupci (tedy na pozici $[1,2]$) znaménko -. Zjistěte, zda je možné použitím povolených tahủ změnit tabulku tak, aby obsahovala pouze znaménka +

Pro pilné Y̌ešitele zadáváme jako téma rozšǐ̌ưjící úkol: zjistěte, jak vypadá situace v tabulce $n \times n$. Vaším úkolem je tedy charakterizovat množinu stavů do kterych se lze dostat pomocí těchto povolených úprav.

Přiklad 8. Kondenzátor

Je dán kondenzátor se čtvercovými deskami. Ve směru rovnobě̌̃ném s deskami přilétá elektron rychlostí \vec{v}_{0}. Provedeme následující úvahu: na elektron působí pole kondenzátoru silou konstantní velikosti, kolmou ke směru rychlosti \vec{v}_{0}. To znamená, že po průletu kondenzátorem si elektron zachová složku rychlosti ve směru \vec{v}_{0}, získá však navíc jětě nějakou rychlost ve směru kolmém (ve směru intenzity elektrického pole kondenzátoru \vec{E}), zvy̌̌í se tedy velikost jeho kinetické energie.

Energie kondenzátoru závisí pouze na jeho kapacitě a náboji. Ty se ale průletem elektronu nezmění, takže energie kondenzátoru bude po průletu elektronu stejná jako na počátku. A na vás je, abyste vysvětlili, jak je to vlastnĕ s těmi zákony zachování (energie a hybnosti) - jak je možné, že se celková energie soustavy elektron-kondenzátor zvětšila?

Příklad 9. Odpočinkové úlohy

Opět vás čeká nová serie jednoduš̌ích úloh, bodovaných postupně $1,2,3,4$ body.

1. Ach ta maturita

V maturitních ročnících na gymnáziu se rozhodli propagovat významná povolání. Pozvali zástupce z vysoké §̌koly hutní, hornické a dopravní, aby si pohovơ̛ili se skupinou studentů, ktex̆í mají o tato povolání zájem. Nikdo se nehlásil na více než jednu školu. Kdy̌̆ zástupce hutní školy odcházel z besedy, řekl: "Pr̛ihlásili se všichni, kromě tři." Za chvíli přišel zástupce hornické školy a řekl: "V̌̌ichni kromě tří chtějí jít k nám studovat." Totế̌ prohlásil i zástupce dopravní ǧkoly. Vaší úlohou je zjistit, kolik studentů se zúčastnilo besedy.
2. Tr̂̀i mudrcové

TỲ̛i mudrcové se vydali na výlet. Jednoho večera ulehli do trávy a usnuli. V noci šel kolem nějaký vtipálek a namaloval každému z nich na čelo posměsný obrázek.

Dalšího rána se tito pánové probudili a vzájmeně se na sebe podívali. Okamžitě se začali smát, protože ostatní vypadali velice legračně. Po chvíli jỉm ale úsměv ztuhl na rtech, protože si uvědomili, že toto posmě̌né znamení mají na čele také.

Jak to zjistili? Samož̌ejmě nepoužili zrcátko a ani se nesnažili rukou nahmatat barvu na svém čele.
3. Věčný věkový problém

Dvěma lidem je dohromady 86 let. Počet let jednoho z nich twoří $15 / 16$ počtu let, kterého druhý dosáhne, až věk prvního bude tvořit $9 / 16$ počtu let, jehož by druhý dosáhl, kdyby se dožil věku, kterýy je dvanáctkrát věť̌í než počet let prvního z nich v okamžiku, kdyby první mohl být dvakrát tak starý jako druhy. Kolik let je prvnímu a kolik druhému?
4. Čtyři čtyřky

Použitím právě čtyř cifer 4 a libovolného množst ví závorek a operací $+,-, x, /$ vyjádřete postupně všechna přirozená čísla z množiny $1,2, \ldots, 30$. Napx̌. $0=4+4-4-4$. Pokud si opravdu nebudete vědět rady, mư̌̌ete použít i odmocninu, faktoriál,... Ale výrazy složené pouze ze 4 základních aritmetických operací budou hodnoceny lépe.

Náročnẹǰ̧í řě̌itelé mohou jako téma řešit rozşíření tohoto příkladu: pokud bychom vám povolili používat také některé další funkce, jako jsou např. \sqrt{x}, \log , \exp, sin, $\cos , x!, \ldots$, dokázali byste vyjád̛̛it libovolné přirozené číslo n ? Obecny vzorec je vítán. Zkuste také použitím těchto funkcí vyjádřit větší interval čísel, např. $1,2, \ldots, 100$.

Uzávěrka daľ̌ího čísla je 5. března. 1998.

Robert Špalek B1506
VŠK 17. listopadu Pátkova 3
18200 Praha Holešovice

