$\mathrm{M} \& \mathrm{M}$ číslo 2 ročník IV

Milí řešitelé,

tak jsme vydali 2. sérii. Nenajdete v ní výsledky soutěže o logo našeho seminấe. Ty budou vyhodnoceny v některé z pľísistích sérií. Do té doby mưžete posílat dalsín náměty.

Důrazně vás upozorňujeme na změnu adresy seminâ̌e. Novou adresu najdete na poslední straně pod výsledkovou listinou.

Zimní soustředění možná proběhne, možná ne. Záleží to na vašem zájmu. Předpokládaná cena za týdenní pobyt v Jizerskych horách je asi 800 ,- Kč. Chaloupku je potřeba zaplnit celou, takže tam musí jet asi 25 lidí včetně organizátorů. V každém případě nám napište okamžitě, zda byste tuto cenu byli ochotni zaplatit, a také nám sdělte co nejrychlejǒí spojení na vás (nejlépe telefon nebo e-mail).

Rádi bychom vás upozornili na změnu množiny opravovatelư semináře. Množina byla sjednocena s podmnožinou množiny loňských f̌ešitelů o prvcích Prof. Tomăš Brauner, Dr. Alě̌ Přivétivýy a Bc. Ivana Capková.

Jistě by vás zajímal také vyklad záhadných symbolư ve výsledkové listině. \sum_{-1} je součet v̌̌ech bodů f̌ešitele za všechny ročníky, po které f̌eší seminář, kromě poslední série. Podle tohoto součtu se určují tituly - každy je v časopise oslovován titulem, který doposud získal, a součet bodů pro tituly se mění až po vydání časopisu. \sum_{0} je obyčejný součet za tuto sérii a konečně \sum_{1} je součet všech bodů za tento ročník. Podle tohoto součtu je také tříděna vy̆ledková listina.

Téma 1 - Neukončená čísla

V celém článku označujeme neukončená čísla $A=\ldots a_{n} a_{n-1} \ldots a_{3} a_{2} a_{1} a_{0}$.

Karel Kyrian, Luboš Dostal, Doc. Pavol Habuda: Kritérium existence inverzního čísla

Je ž̛ejmé, že pokud cifra na Y̌ádu jednotek $a_{0} \in\{0,2,4,5,6,8\}$, tedy $2 \mid a_{0}$ nebo $5 \mid a_{0}$, pak inverzní číslo nemůže existovat. Po násobení libovolným číslem bude v desítkové soustavě cifra jednotek vždy násobkem 2 nebo 5 , protože cifra jednotek vy̆sledku je dána vztahem $c_{0}=a_{0} b_{0} \bmod 10$. Nemŭže tedy nikdy vyjít jednička.

V dalším článku popisujícím algoritmus výpočtu inverzního čísla dokažeme, že pro ostatní čísla inverzní číslo vždy existuje.

Karel Kyrian, Luboš Dostál, Doc. Pavol Habuda: Výpočet inverzního čísla

Necht̉ A, B jsou násobená čísla a $C=1$ je výsledek násobení. Chceme pro zadané A vypočítat B tak, aby $A B=C=1$.

Cifra na n. ̛̌ádě je dána vztahem $c_{n}=\left(\sum_{i=0}^{n} b_{i} a_{n-i}+z_{n}\right) \bmod 10$, kde z_{n} je přenos do n. Y̌ádu. PY̌enos do
 upravit na tvar $c_{n}=\left(\sum_{i=0}^{n-1} b_{i} a_{n-i}+a_{0} b_{n}+z_{n}\right) \bmod 10$.

Tento tvar má jednu vy̧hodu: při výpočtu n. cifry výsledku je použito cifer $b_{0}, b_{1}, \ldots, b_{n-1}$ a cifry b_{n}. To znamená, že cifru b_{n} mưžeme přehodit na druhou stranu a vztah řešit jako rovnici. Nejprve vypočítáme cifru b_{0}, pak jejím dosazením cifru b_{1}, pak dosazením cifer b_{0}, b_{1} získáme cifru b_{2} atd...Ukažme, že za pǐedpokladu uvedeném v předchozím článku má rovnice vždy f̌ešení.

$$
\begin{aligned}
c_{n} & =\left(\sum_{i=0}^{n-1} b_{i} a_{n-i}+a_{0} b_{n}+z_{n}\right) \bmod 10 \\
0 & \equiv \sum_{i=0}^{n-1} b_{i} a_{n-i}+a_{0} b_{n}+z_{n}-c_{n} \quad(\bmod 10) \\
a_{0} b_{n} & \equiv c_{n}-\sum_{i=0}^{n-1} b_{i} a_{n-i}-z_{n} \quad(\bmod 10) \\
b_{n} & \equiv a_{0}^{-1}\left(c_{n}-\sum_{i=0}^{n-1} b_{i} a_{n-i}-z_{n}\right) \quad(\bmod 10)
\end{aligned}
$$

Dostali jsme jednoznačny vztah pro b_{n} za př̌edpokladu, že existuje inverzní prvek vzhledem k násobení číslem a_{0} modulo 10 . Jak si asi každý zkusil, tento inverzní prvek skutečně pro vhodná a_{0} existuje, nebof $1 \cdot 1 \equiv 1$, $3 \cdot 7 \equiv 1,9 \cdot 9 \equiv 1$. Po každém výpočtu cifry spočítáme i odpovídající přenos a můžeme pokračovat.

Upravíme ještě vztah pro požadované číslo $C=1$, tedy $c_{0}=1, c_{i}=0$ pro $i \geq 1$.

$$
\begin{aligned}
b_{0} & =\left(a_{0}^{-1} c_{0}-z_{0}\right) \operatorname{div} 10=\mathrm{a}_{0}^{-1} \\
n \geq 1 \Rightarrow b_{\pi} & =\left(-a_{0}^{-1}\left(\sum_{i=0}^{\pi-1} b_{i} a_{\pi-i}+z_{n}\right)\right) \operatorname{div} 10
\end{aligned}
$$

Luboš Dostál: Výpočet inverzního čísla pro čísla přirozená

Pro přirozená čísla existuje jisty vztah mezi dělením v oboru racionálních čísel a dělením v našem oboru.
Nejprve najděme cifru $b_{0}=a_{0}^{-1}$, opět musí být cifra a_{0} vhodná. Pak zjistíme podíl v oboru racionálních čísel $d=b_{0} / A$, kterýnám vytvơ̂í periodické racionální číslo $d=0, \overline{b c d \ldots h i j}$. Tvrdím, že pak neukončené číslo $B=A^{-1}=\overline{b c d \ldots h i j} b_{0}$. Tento postup vyhovuje pro všechna přirozená čísla kromě trojky, pro kterou platí $3^{-1}=\overline{6} 7$. Důkaz:

$$
\begin{aligned}
\left(\overline{b c d \ldots h i j} b_{0}\right) a & =\left(\overline{b c d \ldots h i j} 0+b_{0}\right) a= \\
& =\overline{9} C 0+D 1=\overline{0} 1=1, \\
\text { protože } 1=d a & =0, \overline{b c d \ldots h i j} a=(0, b c d \ldots h i j+0,000 \ldots 000 \overline{b c d \ldots h i j}) a \\
& =[D-1], 999 \ldots 99 C+0,000 \ldots 00 D=D,
\end{aligned}
$$

což prýplyne z postupu.

Karel Kyrian, Luboš Dostál: Hledání kơ̌ene rovnice $x^{2}=x$
Necht $C^{2}=C$. Vytvořme soustavu rovnic pro jednotlivé cifry, která bude mít vhodny tvar, tj. bude ji možno ̛̌ě̌it od jednotkových cifer výše postupně. Označme si podobně jako v předchozích článcích z_{n} přenos do n. ̛̌ádu.

$$
\begin{aligned}
c_{0} & =c_{0}^{2} \bmod 10, \\
n \geq 1 \Rightarrow c_{n} & =\left(\sum_{i=0}^{n} c_{i} c_{n-i}+z_{n}\right) \bmod 10= \\
& =\left(\sum_{i=1}^{n-1} c_{i} c_{n-i}+2 c_{0} c_{n}+z_{n}\right) \bmod 10 \\
0 & \equiv \sum_{i=1}^{n-1} c_{i} c_{n-i}+c_{n}\left(2 c_{0}-1\right)+z_{n} \quad(\bmod 10) \\
c_{n}\left(1-2 c_{0}\right) & \equiv \sum_{i=1}^{n-1} c_{i} c_{n-i}+z_{n}(\bmod 10) \\
c_{n} & =\left(\left(1-2 c_{0}\right)^{-1}\left(\sum_{i=1}^{n-1} c_{i} c_{n-i}+z_{n}\right)\right) \bmod 10
\end{aligned}
$$

Vidíme, že každá další cifra je jednoznačně definována, pokud existuje inverzní prvek k číslu $1-2 c_{0}$. Pokud by k němu inv. prvek neexistoval, už by nebylo řě̌ení jednoznačné, přesto by ale eventuálně mohlo existovat, kdyby byla pravá strana rovnice nulová nebo násobek $1-2 c_{0}$. Vyřes̆me ale raději nejprve rovnicì $c_{0}=c_{0}^{2} \bmod 10$. Jediná řešení jsou $\{0,1,5,6\}$. Císla $1-2 c_{0} \bmod 10$ jsou po řadě $1,9,1,9$, jejich inverzní prvky jsou rovnĕ̌̌ $1,9,1,9$.

Vidíme, že se diskuzemi nemusíme vůbec zabŷvat, nebof̉ každé zvolení c_{0} vede k jednoznačnému f̌ešení. Tabulka Y̌ešení je následující:

\boldsymbol{c}_{0}	C
$\mathbf{0}$	0
1	
5	$\ldots 23230896109004106619977392256259918212890625$
$\mathbf{6}$	$\ldots 76769103890995893380022607743740081787109376$

Luboš Dostál: Bádání nad vlastnostmi nekončených čísel

Pro bádání nad touto strukturou potřebujeme dokázat, že je to komutativní okruh, tj. že jeho aritmetické operace splňují jisté podmínky. Konkrétně je to u sčítání komutativita $a+b=b+a$, asociativita $a+(b+c)=(a+b)+c$, existence neutrálního 0 a inverzního $-a$ prvku a u násobení komutativita $a b=b a$, asociativita $a(b c)=(a b) c$ a existence neutrálního prvku 1. Dále musíme dokázat distributivitu těchto operací $(a+b) c=a c+b c$.

Dalším úkolem je ověřit, zda je tento okruh tělesem, tj. zda v něm existuje pro každé nenulové číslo prvek inverzní a^{-1}, nebo alespon̆ oborem integrity, což znamená, že pokud je součin 2 čísel nulovy, musí být aspon̆ jedno z čísel nulové, čili $a \neq 0, b \neq 0 \Rightarrow a b \neq 0$.

Pro operaci sčitání není potřeba se podrobněji rozepisovat. Zapíšeme-li si vztah pro n. cifru výsledku, ovệ̛́me ihned, že je komutativní i asociativní, stejně jako okamžitě rozeznáme existenci neutrálního a inverzního prvku.

Podobně je možno ověřit vztahy i pro násobení. Vztah pro n. cifru výsledku je $c_{i}=\left(\sum_{i=0}^{n} a_{i} b_{n-i}+z_{i}\right)$ mod 10 , kde z_{n} je opět přenos do n. ̌̌ádu $z_{0}=0, n \geq 0 \Rightarrow z_{n+1}=\sum_{i=0}^{n} a_{i} b_{n-i}$ div 10 . Je ž̌ejmé, že operace je komutativní. U asociativity to již tak zřejmé není, také to autor ani neuvedl. Distributivní zákon zůstal rovněě nepovšimnut.

Velmi důležité je tvrzení, že okruh NENí ani oborem integrity. Z vy̌se uvedených článků vyplŷvá existence netriviálního ̛̌ešení rovnice $x^{2}=x$, tedy $\exists x: x \neq 0, x \neq 1, x(x-1)=0$, což znamená, že existují dvě nenulová čísla $x, x-1$, jejich ̌̌ součin je nula. To nám naprosto roz bơ̌í obvyklou metodiku řešení rovnic, napǐ. kvadratických, které obvykle upravíme na součinovy tvar a předpokládáme, že alespoñ jeden součinitel musí bŷt nulový.

Mezi netriviálními f̌ešeními x_{1}, x_{2} rovnice $x^{2}=x$ existuje jisty vztah. Zavedeme-li si do rovnice substituci $x=1-y$, dostáváme

$$
\begin{aligned}
(1-y)^{2} & =1-y \\
1-2 y+y^{2} & =1-y \\
y^{2} & =y
\end{aligned}
$$

z čehož plyne, že pokud je x y̌ešením rovnice, pak i $1-x$ je ̛̌ešením rovnice. Netriviální řešení jsou právě dvě, tedy $x_{1}+x_{2}=1$.

Pokud umíme v našem oboru odmocňovat čísla, je možné řešit i rovnici $x^{2}=a x$. Zavedeme-li si substituci $x=\boldsymbol{a} z$, dostáváme $a^{2} z^{2}=a^{2} z$, tedy $z^{2}=z$, kterou už umíme vyřešit.

Lineání rovnice $a x+b=0$ se ̌̌eší vztahem $x=a^{-1}(-b)$, pokud a^{-1} existuje. Otázka je, nalezneme-li tímto postupem opravdu všechna ̛̌ešení.

Druhá odmocnina mưže existovat pouze z čísel, které končí na $\{0,1,4,5,6,9\}$. Pokud bude existovat jedna odmocnina, musí existovat alespon̆ dvě, nebot̉ $x^{2}=a \Rightarrow(-x)^{2}=a$. Dalǐím tématem vašeho bádání mưže bŷ́t algoritmus výpočtu nĕjaké odmocniny.

Luboš Dostál: Interpretace některých neukončených čísel

Čísla tvaru $\overline{999} a_{n} a_{n-1} \ldots a_{1} a_{0}$ je možno interpretovat jako záporná celá čísla, čísla tvaru $\overline{000} a_{n} a_{n-1} \ldots a_{1} a_{0}$ jsou samozřejmě obvyklá čísla přirirozená.

Periodická čísla $\overline{p_{k} p_{k-1} \ldots p_{2} p_{1} p_{0}} a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}$ je možno chápat jako čísla racionální p / q. Uměli byste najít k danému periodickému číslu jemu příslušející zlomek?

Ostatní čísla jsou obecně iracionální, zatím neznáme jejich vy̌znam.

Téma 2 - Lednička

Dr. Jan Holeček: Kompresorová lednička

Kompresorovou ledničku tvơ̌í 3 hlavní části: kompresor, chladič a výparník (viz obr. 1). Kompresor nasává sytou páru chladiva a vykonáním práce ji stlačí z tlaku p_{1} na p_{2}. Tím se vytvoří pára přehřátá. Ta se v chladiči ochladí předáním tepla do okolí na teplotu varu a zkondenzuje na sytou kapalinu (při tlaku p_{2}). V redukčním ventilu dojde k adiabatickému sní́ení tlaku na p_{1}, čímž se kapalina ochladí. Ve výparníku přijme chladivo teplo od chlazeného objektu. Tím dojde k odpaření chladiva. Vzniklá pára je nasávána zpět kompresorem.

Doc. Pavol Habuda: Kompresorová chladnička

Ve svém článku chci doplnit popis kolegy Dr. Jana Holečka. Vypařování látky ve výparníku odpovídá v $T-S$ diagramu (teplota-entropie) stupeí $4-1$ (viz obr. 2). Páry z výparníku nasává kompresor, který je stlačí na tlak p_{2}, odpovídající teplotě kondenzace T_{2}. Tato komprese necht̉ je adiabatická. Z kompresoru postupují stlačené
 vyparníku p_{1}.

Účinnost tohoto procesu můžeme odhadnout na základě zjednodušeného grafu (obr. 2). Převed’me si tento graf do $p-V$ diagramu (obr. 3). Pro účinnost podle Carnotova vztahu platí

$$
\begin{equation*}
\eta=\frac{T_{2}-T_{1}}{T_{2}} \tag{TIT.1}
\end{equation*}
$$

VYhodnějǔí je zavést tzv. chladící účinnost $\varepsilon=\eta^{-1}$
Zkusme si ted’ odvodit vztah pro příkon ledničky. Práce vykonaná během jednoho cyklu je

$$
W=Q_{1}-Q_{2} .
$$

Víme, že platí

$$
\begin{equation*}
P=\frac{W}{\Delta t}=\frac{Q_{1}-Q_{2}}{\Delta t}=\frac{Q_{1}}{\Delta t}\left(1-\frac{Q_{2}}{Q_{1}}\right)=\frac{Q_{1}}{\Delta t}\left(\frac{T_{1}-T_{2}}{T_{1}}\right)=\frac{-Q_{1} T_{2}}{\varepsilon \Delta t T_{1}} . \tag{TH.2}
\end{equation*}
$$

Odtud

$$
\begin{equation*}
|P|=\frac{Q_{1} T_{2}}{\varepsilon \Delta t T_{1}}=P_{P R O S T R} \cdot \frac{T_{2}}{\varepsilon T_{1}}, \tag{TI.3}
\end{equation*}
$$

kde $P_{\text {Prostr }}$ je výkon prostředí

Mgr. Jarmila Mulačová: Princip absorpční ledničky

U těchto ledniček chybí kompresor, jeho funkce je nahrazena pohlcováním chladiva v absorbéru a jeho vypuzováním ve vypuzováku absorpční kapalinou za různých teplot (viz obr. 4). Kapalné chladivo stéká z kondenzátoru K do výparníku V a odpařováním chladí komoru, v ní̌ je výparník umístěn. Pára chladiva (obvykle čpavku), vystupujícího z výparníku, je v absorbéru A pohlcována vodou, přičemž se uvolňuje teplo, které soustava odevzdá svému okolí, napy̌. okolnímu vzduchu. Voda obohacená čpavkem proudí ve směru šipky do vypuzováku P, ohy̌ívaného topným tělesem. PY̌i vy̌̌̌̌í teplotě se část čpavku z vody vypudí a ochuzená voda se vrací do absorbéru. Vodu udržuje v pohybu topné těleso (ohřevem svislé trubky se část čpavku vypudí; voda obsahující bublinky čpavku pak má menŝ́ hustotu než voda bez bublinek a díky tomu cirkuluje). Vypuzeny čpavek proudí přes odlučovač vody O zpět do kondenzátoru, kde znovu zkapalní.

Tomáš Nečas: Princip tepelného čerpadla

Tepelným čerpadlem rozumíme stroj, který dodanou práci použije k přečerpání tepla z chladnějǒího tělesa na teplejozí. Základní schéma tepelného čerpadla viz na obr. 5. Teplo Q_{0}, odebrané chladnějšímu tělesu p̌̌i teplotě T_{0} odvádí stroj spolu s dodanou prací ve formě tepla Q do prostředí o teplotě T.

Vzhledem k tomu, že jde o vratny děj ($\Delta S=0$,) budeme moci nahradit ve vztahu pro účinnost teplo Q teplotou T. Účinnost zâ̌ízení je poměr získaného, resp. odebraného tepla a práce, kterou musíme dodat. Pro ledničku tak dostaneme:

$$
\begin{equation*}
\varepsilon=\frac{Q_{0}}{W}=\frac{Q_{0}}{Q-Q_{0}}=\frac{T_{0}}{T-T_{0}} . \tag{TII.4}
\end{equation*}
$$

Nyní uvažujme tepelné čer padlo, kterým topíme:

$$
\begin{equation*}
\varepsilon=\frac{Q}{W}=\frac{Q}{Q-Q_{0}}=\frac{T}{T-T_{0}} . \tag{TH.5}
\end{equation*}
$$

Pokud tuto účinnost srovnáme např. s elektrickým přímotopem, vidíme, že účinnost mưže bŷt větší. Uǔcinnost přímotopu je:

$$
\begin{equation*}
\varepsilon=\frac{Q}{W} . \tag{TII.6}
\end{equation*}
$$

V ideálním případě $Q=W$ je $\varepsilon=100 \%$.

Tomáš Nečas: Peltierova chladnička

Toto zǎízení se využívá především v elektronice. Funguje asi takto: v termoelektrickém generátoru se vnêjším tepelným výkonem udržuje jeden spoj na teplotě vyš̌íl než druhý. Tím vzniká elektricky proud, který odevzdává vy̌kon spotřebiči. Nahradíme-li spotřebič zdrojem stejnosměrného proudu, zvětǔuje se rozdíl teplot mezi oběma spoji.

Doc. Pavol Habuda: Mŭj masokombinat

Představme si velký masokombinát, kterýy mưže odebírat příkon několik set kW. Jestliže např. $P \approx 200 \mathrm{~kW}$, pak pro výkon chladničky P_{2} platí

$$
\begin{equation*}
P_{2}=P \varepsilon=1,2 \mathrm{MW} \tag{TII.7}
\end{equation*}
$$

uváž́me-li teploty $T_{1}=-18^{\circ} \mathrm{C}, T_{2}=35^{\circ} \mathrm{C}$.
Dá se dokázat, že ztrátovy vykon na potrubí je zanedbatelný v porovnání s výkonem teplé vody (podrobný vYpočet k nahlédnutí u autora).

Teplá voda se přivádí do radiátorů. Odhadněme celkovy objemovy prŭtok všemi radiátory:

$$
\begin{equation*}
Q_{v}=\frac{V}{t}=\frac{m}{\varrho t} \tag{TH.8}
\end{equation*}
$$

kde m je hmotnost vody, která proteče za čas t. PY̌i teplotním rozdílu ΔT platí pro teplo odevzdané vodou $P t=$ $m c_{v} \Delta T$, odkud dosadíme za m do vztahu TII. 8 a dostaneme

$$
\begin{equation*}
Q_{v}=\frac{P}{c_{v} \Delta T \varrho} \approx 201 \tag{TH.9}
\end{equation*}
$$

To by znamenalo vytápět asi 200 radiátory. Předpokládáme-li, že byt má 5 radiátorů, mưžeme vytápět 40 bytů, což je možná osmiposchodovy panelák.

Téma 3 - Rovinné dláždění

Nejprve bych se chtě̌l všem (i potencionálním) Y̌ě̌itelům velice omluvit za vágní formulaci zadání. Tato způsobila naprostou nejasnost jeho výkladu, následně neporozumnění, v důsledku čehož se na téma každy y̌ešitel díval z úhlu vlastního pohledu.

Do redakce přišlo 5 článků, z nichy̌ asi 3 stojí za publikování. Vzhledem k jejich nedotaženosti ale hlavně jejich různorodosti nechci plýtvat drahocenným místem a nebudu je celé i s náčrtky přetiskovat. Poznamenám sem pouze několik zajímavých postřehŭ, nápadů a rad.

Doufám, že se po jejjich přečtení pokusíte systematicky rozdělit všechna dláždění do několika skupin znovu.

redaktor Robert Spalek: kritéria dělení dlaždění

Vezměme si libovolné shodné zobrazení roviny na sebe sama. Takovým zobrazením mư̌̌e být libovolné složení posunutí, zrcadlení a rotace. Budeme zkoumat, kdy se tímto zobrazením zobrazí dlázdění přesně na sebe. Množinu všech shodných zobrazení, které zobrazí dláǎdění na sebe, nazvěme grupou dlăzdění G.

Je zřejmé, že pokud obě zobrazení $a, b \in G$, pak musí také zobrazení $a \circ b \in G$, protože po zobrazení roviny zobrazením a získáme to samé dlázdění, to pak po zobrazení zobrazením b se promítne zase samo na sebe, takže i jejich složení $a \circ b$ promítne dláždění samo na sebe. Dále víme, že identické zobrazení e vždy zobrazí dláždění na sebe, protože zobrazí na sebe všechny body roviny. Také víme, že k libovolnému zobrazení a roviny existuje inverzní zobrazení a^{-1}, které je také shodné. Díky těmto základním poznatkủm mư̌̌̌̌eme systém všech zobrazení dláždění na sebe považovat za grupu.

Pokud bychom dovolili libovolná dláždění, např. i aperiodická, pak by tato grupa mohla být jednoprvková (obsahovala by pouze identické zobrazení). My ale požadujeme, aby dláždění bylo periodické, tzn. aby existovaly nejméně 2 různé směry, ve kterých se bude dláždění opakovat. Za těchto předpokladů víme, že do grupy G patří vždy nejméně všechny celée násobky 2 základních posunutí v_{1}, v_{2} a jejich kombinace (což je vlastně taková nekonečná mî̌ưka).

Zajistili jsme si tedy, aby grupa G byla aspon̆ trochu zajímavá.
Za nejjednodužěí dláždění tedy považujeme takové, které má pouze triviální symetrii - opakování po určitých intervalech. Dláždění mohou bŷt ale mnohem bohatǒí, napy̌. je mǔžeme beze změny zrcadlit či rotovat o $60,90,120$ nebo 180 stupn̆ŭ.

Příklady. Čtvercová silt se např. od obdélnikové liší tím, že ji lze rotovat ještě o 90 stupn̆ŭ. Kosočtverce se od kosodélnikủ liši tím, že je lze zrcadlit.

Rozdělme nyní dládě dění do několika typů podle struktury jejich grupy symetrií G, podle toho, která dláždění se dají jak rotovat, posouvat, zrcadlit atd...

Lenka Zdeborová: Rozdělení dláždění v rovině

Kostičky mư̌̌eme rozdělit do základních skupin:

1. kostička má 6 sousedů, v 1 bodě se stýkají 3 ,
2. kostičká má 4 sousedy, v 1 bodě se stŷkají 4 .

Dále je mư̌̌̌eme rozdělit podle počtu os symetrie na

1. kosodélníky - žádná osa
2. kosočtverce - 2 osy
3. obdélníky - 4 osy
4. čtverce - 3 osy

Autorka doplnila několik náčrtků a dospěla k existenci 14 skupin dláždění.

Doc. Pavol Habuda: Rozdělení dláždění v rovině

Jediné pravidelné n-úhelníky, kterymi lze vyplnit rovinu, jsou trojúhelník, čtverec a šestiúhelník. Z této skupiny musíme vycházet pǐi klasifikaci skupin dláždění.

Po krátké diskuzi o vlastnostech rotace v rovině̃ dospěl autor, že středová souměrnost se při rotaci nemění, kdežto osová ano. Dále dokázal, že libovolným trojúhelníkem lze beze zbytku vyplnit rovina. Prvním kritériem je podle autora počet stran souměrnosti.

Druhým kritérie různosti 2 dláždění může být počet kostiček setkávajících se v každém rohu. Třetím kritériem by mohl byt počet sousedů jednotlivych kostiček.

Užitím těchto pravidel autor dospěl k celkovému výsledku 11 skupin dláždění.

Úloha 1 - Zahradní sprcha

Zay̌ízení bude fungovat na principu spojených násob. Voda bude přitékat po dobu 10 minut, pak dosáhne hladina vy̌sky h_{1}, voda začne trubicí odtékat z rozdílu tlaků, u dna nádoby je tlak $p_{1}=p_{a}+p_{\pi}$ a u ústí trubice pouze p_{a}. Proto vznikne podtlak a postupně vyteče celý obsah nádoby (k tomu je třeba, aby pr̂́t ok byl menší než odtok), jinak by stále voda přitékala a nikdy by neodtekla všechna.

Dále je třeba uvažovat, zda tento model bude fungovat pro různé průměry trubice. Pokud se zamě̌̌íme na okamžik, kdy voda dosáhne vy̌̌̌ky h_{1}, voda stále přitéká a odtéká vždy takové množství, které přesáhne h_{1}. Voda odtéká rychleji než přit téká a tedy nikdy nedosáhne h_{2}.

Navrhovany model tedy nebude fungovat pro libovolný průměr trubice, trubice musí bŷt dostatečně tenká, aby díky kapilaritě voda přilnula i k hornímu okraji trubice.

Další diskuze k tomuto př̌íkladu můžete zasílat jako články do časopisu. Pokuste se spočítat, jak tenká musí trubice být a zda voda tak tenkou trubici nezalepí.

Úloha 2 - Kulečník

Jako autorské ̛̌ešení si dovolíme čtenášské obci předložit skvělé ̛̌ešení Petra Zimy. Myslíme si, že k němu není co dodat.

Označme strany stolu a, b. Zvolme kartézsky systém soư̌adnic s počátkem v jednom rohu stolu tak, aby každá z os x, y byla rovnobě̌̌nás nějakou hranou stolu (viz obrázek). Stůl zobrazme v osové symetrii podle jeho
mantinelŭ. S takto vzniklymi stoly proved’me totéz atd., ă̌ zaplníme celou rovinu stoly. Stoly mají oproti původnímu stolu 4 různé druhy orientace, jak je na obrázku vyznačeno pomocí šipek.

Formálně to znamená, že pro libovolné dva body $A=\left[x_{1}, y_{1}\right], B=\left[x_{2}, y_{2}\right]$ platí $A=B$, právě když

$$
\begin{equation*}
(\exists m, n \in \mathbf{Z})\left(x_{2}= \pm x_{1}+2 m a \quad \& \quad y_{2}= \pm y_{1}+2 n b\right) . \tag{II.2.1}
\end{equation*}
$$

Mantinely mají rovnice $x=m a$ a $y=n b ; m, n \in \mathbf{Z}$. Osová souměrnost podle mantinelu je tedy v naší rovině identitou.

Koule se pohybuje bud’ po přímce, nebo se při odrazu její trajektorie osově zobrazí podle mantinelu. V naší rovině tedy mưžeme trajektorii chápat jako px̌ímku určenou rovnicí

$$
\begin{equation*}
\frac{y-y_{0}}{x-x_{0}}=k \tag{H.2.2}
\end{equation*}
$$

kde $k=\tan \alpha ; \alpha$ je směrnice této přímky a $\left[x_{0}, y_{0}\right]$ je počáteční poloha koule.
Aby se koule pohybovala po tê̌̌e úsečce dvakrát, musí projít jedním jejím bodem podruhé stejným nebo opačným směrem, než jakŷm žla prvně (tato podmínka je nutná i postačující). V naší rovině tedy musí ležet na dané prímce dva body $\left[x_{1}, y_{1}\right]$, $\left[x_{2}, y_{2}\right]$ splňující

$$
\begin{equation*}
(\exists m, n \in \mathbf{Z})\left(x_{2}=x_{1}+2 m a \quad \& \quad y_{2}=y_{1}+2 n b\right) \tag{HI.2.3}
\end{equation*}
$$

nebo

$$
\begin{equation*}
(\exists m, n \in \mathbf{Z})\left(x_{2}=-x_{1}+2 m a \quad \& \quad y_{2}=-y_{1}+2 n b\right) . \tag{II.2.4}
\end{equation*}
$$

Obě podmínky rozeberme podrobněji:
(II.2.3) $\quad\left(\exists\left[x_{1}, y_{1}\right] \neq\left[x_{2}, y_{2}\right]\right)\left(y_{2}-y_{1}=k\left(x_{2}-x_{1}\right) \quad \& \quad(\exists m, n \in \mathbf{Z}) x_{2}=x_{1}+2 m a \quad \& \quad y_{2}=y_{1}+2 n b\right)$ je zřejmě ekvivalentnís podmínkou

$$
k=\frac{m a}{n b} .
$$

Tato podmínka triviálně platí i pro $\alpha= \pm \frac{\pi}{2}$, kde není $\tan \alpha$ definováno. Tedy máme pro libovolný bod [$\left.x_{1}, y_{1}\right]$ podmínku ekvivalentní s (II.2.3):

$$
(\exists n \in \mathbf{Q}) k=n \cdot \frac{\boldsymbol{a}}{b}
$$

(II.2.4) $\quad\left(\exists\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right]\right) y_{2}-y_{1}=k\left(x_{2}-x_{1}\right) \quad \& \quad(\exists m, n \in \mathbf{Z})\left(x_{2}=-x_{1}+2 m a \quad \& \quad y_{2}=-y_{1}+2 n b\right)$ је ekvivalentní podmínce
$[m a, n b]$ leží na trajektorii koule,
nebot

$$
[m a, n b]=\frac{\left[x_{1}, y_{1}\right]+\left[x_{2}, y_{2}\right]}{2}
$$

a tento bod zjevně leží na přímce určené body $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right]$. Tedy podmínka (II.2.4) je ekvivalentní tomu, že koule jednou přijde přesně do rohu stolu a odrazí se zpět.

Diskutujme fyzikální význam splnění podmínek (II.2.3) a (II.2.4).
(i) Pokud platí (II.2.3), dostane se koule po uč̌itté době do téhož pohybového stavu. Každou úsečkou své trajektorie tudíz projde nekonečněkrát.
(ii) Pokud platí (II.2.4), dostane se koule někdy do rohu, tam se odrazí do směru, ze kterého přišla, a vrací se po všech úsečkách, které už proběhla. Jestliže zároveň neplatí (II.2.3), tak se už nikdy nedostane na jinou úsečku podruhé.

Závěr. Mohou nastat tři rủzné situace:
(1) tan α je racionální násobek $\frac{a}{b}$ (nebo $\pm \infty$). Potom koule projde každou úsečku své trajektorie nekonečněkrát.
(2) Pokud nenastal případ (1) a koule se po určité době dostane přesně do rohu, pak všechny úsečky prošlé před okamžikem odrazu v rohu projde právě dvakrát. Všechny ostatní úsečky své trajektorie projde právě jednou.
(3) Pokud nenastal ani případ (1), ani (2), pak neexistuje úsečka, po ní̌̌ by se koule pohybovala vícekrát než jednou.

Úloha 3 - Šneček provazochodec

Označme $t_{0}=1 \mathrm{~m}$ délku lana v čase $t=0, v_{\mathrm{S}}=1 \mathrm{~mm} \cdot \mathrm{~s}^{-1}$ rychlost ̌̌nečka vzhledem k lanu, $v_{B}=1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ rychlost vzdalování bodu B od bodu A a $x(t)$ vzdálenost ňnečka od bodu A v čase t. Protože se lano natahuje rovnoměrně, je jeho délka v čase t rovna $l(t)=l_{0}+v_{B} t$. Okamžitá rychlost ñnečka vzhledem k bodu A se skládá ze dvou složek - z rychlosti v_{S} a rychlosti $v_{B} \cdot \frac{x(t)}{l(t)}$, což je rychlost vzdalování bodu lana, ve kterém se šnek nachází, v dủsledku natahování lana. Pro celkovou rychlost ňneka vzhledem k bodu A tak platí

$$
\begin{equation*}
\frac{d x}{d t}=v_{\mathrm{S}}+v_{B} \frac{x(t)}{l(t)} \tag{1}
\end{equation*}
$$

Zavedeme-li jako novou proměnnou část lana, kterou jǐ̌ šneček urazil, $y(t)=\frac{x(t)}{(t)}$, dostaneme

$$
y^{\prime}(t)=\frac{x^{\prime}(t) l(t)-x(t) l^{\prime}(t)}{l^{2}(t)}=\frac{x^{\prime} l-v_{B} x}{l^{2}}
$$

Odtud dosazením do (1) dostaneme

$$
\begin{equation*}
l y^{\prime}=v_{\mathrm{S}} \tag{2}
\end{equation*}
$$

Ke stejné rovnici můžeme dojít touto úvahou: je-li y část lana, kterou již šnek urazil, je y^{\prime} pr̂írůstek této části, zpǔsobený vlastní šnekovou rychlostí v_{B} (kdyby $v_{B}=0$, zŭstával by při natahování poľád ve stejné části lana, takže by bylo $y=k o n s t$.). Odtud uと̌ plyne rovnice (2), kterou mǔ゙̌eme snadno zintegrovat:

$$
y=v_{\mathrm{S}} \int \frac{d t}{l}=v_{\mathrm{S}} \int \frac{d t}{l_{0}+v_{B} t}=\frac{v_{\mathrm{S}}}{v_{B}} \ln \left(l_{0}+v_{B} t\right)+\text { konst. }
$$

Dosazením okrajových podmínek $t=0, y=0$ a $y=1$, když šnek doleze do bodu B, máme

$$
\begin{gathered}
1=\frac{v_{\mathrm{S}}}{v_{B}}\left[\ln \left(l_{0}+v_{B} t\right)-\ln l_{0}\right]=\frac{v_{\mathrm{S}}}{v_{B}} \ln \left(1+\frac{v_{B} t}{l_{0}}\right) \\
t=\frac{l_{0}}{v_{B}}\left(e^{v_{B} / v_{S}}-1\right)
\end{gathered}
$$

Pro dané hodnoty vychází $t=\left(e^{1000}-1\right) \mathrm{s}$, tj. asi 6.10^{426} let.
Jak je vidět z tvaru výsledného vzorce, šnek doleze do bodu B dokonce pro libovolnou volbu parametrů $l_{0}, v_{B}, v_{\text {Ş }}$. Věťina z vás správně odhadla, že se jednalo přece jenom o určitou abstrakci (typu "je dán šnek a ten leze, ati se děje, co se děje"), protože tak dlouhou dobu jě̌tě určitě žádny y̌nek bez přestávky nelezl (zkuste si to a uvidíte, jak dlouho vydržíte).

Komentâ̌̌ k f̌ešením: na uvedený způsob prîčilo nemnoho řě̌itelů. Většina správných f̌ešení využívala rovnici (1) a hledala obecnou závislost $x(t)$, což vedlo na poněkud složitějứ výpočty, než féešení rovnice (2). Težsí situaci měli ti, kteří ještě̌ neumějí integrovat. Úloha se dá řě̌it i pomocí posloupností, ale je to pak pracnějǔí a nedáa se tak dopracovat k přes nému vỵsledku. I přesto takto dostali někteří řešitelé celkem slušny odhad.

Zadání nových témat

Poněvadž vašimy příspěvky ještě zdaleka nebyla vyčerpána v̌̌echna minule zadaná témata, ponecháváme vám je k řešení i nadále. Dále vám přidáme jedno nové ‘hravê’ téma.

Téma 4. Dělení lupu
Jistě byste vymysleli způsob, jakým se mohou dva nepoctiví lupiči rozdělit spravedlivě o lup. Pomiňme zpŭsoby založené na dưvê̌̌e ve spravedlnost hodnověrné osoby a nechme je, af̉ si lup rozdělí sami bez cizí pomoci. Jedním z moz̆ných postupŭ je tento:

1. lupič rozdělí lup na dvẽ̌ části, které považuje za stejně cenné,
2. lupič si pak jednu z nich vybere.

Je zřejmé, že bez ohledu na jejich poctivost si každy z nich mŭže vhodným postupem zajistit alespon̆ polovinu uloupeného majetku.

Zobecněte tento postup na N lupičů. Tento postup musí zajistit, aby byl libovolny lupič schopen získat alespoň $1 / N$ majetku, bez ohledu na jeho pořadí, či dokonce př́padný pokus o podvod ze strany ostatních lupičů.

Zadání rekreačních úloh

Úloha č.4. Barvení obrazce

V rovině ja vyznačen následující obrazec:

Je složen z nekonečného počtu obdélníků o obsahu 1. Každy obdélník je dvakrát deľ̌í, ale i dvakrát už̌̌í než obdélník předchozí. Tvary obdélníků tedy jsou $1 \times \frac{1}{1}, 2 \times \frac{1}{2}, 4 \times \frac{1}{4}, \ldots, 2^{n} \times \frac{1}{2^{n}}, \ldots$

Celkovy obsah obrazce je $1 \cdot \frac{1}{1}+2 \cdot \frac{1}{2}+4 \cdot \frac{1}{4}+\ldots=1+1+1+\ldots=\infty$. Není jej tedy možno cely nať̌ít barvou.

Vyrotujme nyní obrazec podle vyznačené osy. Stane se z nĕj těleso složené z elementární válečků. Objem válečku je $\pi r^{2} d$. Celkový objem tělesa je $\pi\left(1 \cdot \frac{1}{1^{2}}+2 \cdot \frac{1}{2^{2}}+4 \cdot \frac{1}{4^{2}}+\ldots\right)=\pi\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{4}+\ldots\right)=2 \pi$. Těleso je tedy možné zaplnit jistým malým konečným množstvím barvy.

Jak je možné, že těleso barvou bez problémů zaplníme, kdežto na obarvení jeho pouhé podmnožiny nám nestačí libovolné množství barvy?

Úloha č.5. Medvěd honí medvědici

Na koncích úsečky délky l se nalézají medvěd a medvědice. Medvědice utíká kolmo k úsečce rychlostí v_{1}, medvěd bě̃̌í v každém okamžiku přesně za ní rychlostí v_{2}. Jaké je zrychlení medvěda ve směru kolmém k úsečce v daném časovém okamžiku?

Úlohy č.6. Odpočinkové úlohy
Následující úlohy jsou lehčí než obvykle, proto je jich víc. Celkem je za ně možno získat 10 bodů. Jsou seřazeny podle obtî́nosti a každáz zich je ohodnocena o bod lépe než úloha předchozí.

- Deset bodů podle obrázku mư̌̌eme spojit třemi přímkami po čtyřech bodech. Změnte polohu dvou bodǔ, aby se 10 bodủ mohlo spojit pěti př̂́mkami po čtyřech bodech.
- Při opravě hodin na věži se hodinář zmýlil a nasadil hodinovou ručičku na osu minutové a minutovou na osu hodinové. Nǎ̛ídil hodiny na 6 hodin, tj. velkou ručičku nâ̌ídil na 12 a malou na 6 a spustil je. Kdy budou hodiny poprvé ukazovat na okamžik správný čas?
- Rozdělte obrazec na obrázku na 10 shodných dílù.
- Číslo končí cifrou 2. Přesuneme-li dvojku z pravého konce na levý, číslo se zdvojnasobí. Určete nejmenší takové číslo, případně všechna taková čísla, obecně.

Řešení rekreačních úloh, jakož i témat posílejte do vánoc (tj. aby nám to došlo ď̛íve, než odjedeme na prázdniny), tedy do 20.prosince.1997. Dŭrazně vás také upozorňujeme na změnu adresy semináře. Nová adresa je:

Robert Špalek B1506, VŠK 17. listopadu, Pátkova 3, 18200 Praha Holešovice

Zimní soustředěnú

S velkou pravděpodobností během druhé poloviny ledna proběhne zimní soustředění. Mělo by se konat v Janově̃ nad Nisou. V blízkosti chaloupky se nachází lyžă̛̌̌ky v lek, okolní krajina je vhodná i na běžky. Kdo nemá lyže, mư̌̌e jet také, budeme pỡádat i pě̌í tůry a různé hry v pf̂irodẽ.

Vzhledem k úsporným opaty̌ením v Jednotě českých matematiků a fyziků se nám nepodařilo zajistit dostatek finančních prostředků na pokrytí všech nákladů. Proto musíme zimní soustředění oproti předchozímu vy̆razně zdražit. Přesto je cena za týden na horách stále výrazně levnějjší než na ostatních zajezdech. Maximální cena soustředění by měla činit 800 ,- Kč za 7 dní a zahrnovala by ubytování a stravu.

Abychom mohli včas objednat chaloupku, prosíme, ozvěte se co nejď̛íve, zda byste měli za těchto podmínek zajem se zúčastnit.

Pokud znáte nějakého kamaráda, kterého by bavilo také se účastnit matematicko-fyzikálního soustředění, připište ho na přihlášku. Pokud budou k dispozici volná místa, mohl by jet také. Vzhledem k tomu, že se soustředění koná v době školního vyučování, napíšeme každému, kdo o to požádá, omluvenku do školy.

Je naprosto nutné, aby byla naplněna kapacita chaloupky, v opačném případě nebude možné soustředění uskutečnit. Proto se během nejbližících dnů ozvěte na jedno z následujících kontaktních míst:

1. e-mail: robertcatrey. karlin.mff.cuni.cz,
2. telefon na kolej: $02 / 8551041$ linka 166 - Robert,
3. jako POSLEDNÍ mơ̌nost mobilní telefon: 0602/435889.

Kromě toho nám do uzávěrky dalšího čísla pošlete vyplněnou přihlášku. Tyka se to samož̌ejmẽ i neřě̌itelů semináře.

Přihláška na zimní soustředění v Janově nad Nisou

Jméno a příjmení
Adresa:
Telefon:
e-mail:
které lyže beru s sebou:
sjezdovky bĕ̌̌ky snowboard sáňky pekáč jiné...

Chcete-li s sebou vzít i nějaky hudební nástroj, připravit si pro ostatní nêjakou př̌ednášku, nebo se jinak podílet na aktivitách soustředění, napište to dolũ do volného místa.

