M\&M číslo 1 ročník IV

Milí kolegové !

přestože do zâ̛̌í ještě nějaky ten čas zbŷvá, již nyní si mưžete přečíst první číslo čtvrtého ročníku naší soutěze $M \& M$. Pokud se s M\&M setkáváte poprvé, pak si pozorně přečtěte následující řádky, na nichž se ve stručnosti pokusíme M\&M představit.

- M\&M je matematicko-fyzikální soutě̌̌, ve které si mưžete provê̌̌it svoje odborné znalosti, ale také projevit vlastní tvŭrčí schopnosti při řešení rŭzných problémŭ, které před vámi neřě̌il (asi) nikdojiny. Pokud jste středoškoláci, a matematika nebo fyzika vás poznamenala natolik, že se stala vaším koníčkem, máte tedy nyní jedinečnou šanci, jak vyplnit svŭj volny čas bádáním nad problematikou vám blízkou a snad i vyhrát letošní ročník soutěže.
- M\&M patří do rodiny takzvaných korespondenčních seminářů, kterých je v Ceské republice a na Slovensku několik (alespoñ 10). Řekněme tedy, v čem se náš seminář od této "konkurence" odiĭsuje, co je pro něj charakteristické.
(1) M\&M je současně také vědecky časopis. Většina seminářủ nabízí k řě̌ení pouze jednoznačně zadané px̂́klady. My kǎ̌doročně otvíráme několik témat, ke kterým mưže kdokoli zaslat libovolny příspěvek (samož̌ejmě k dané problematice). Také nabízíme f̌ě̌itelủm možnost vymyslet a navrhnout nám svoje vlastní téma, se kterým by se chtěli na stránkách časopisu setkávat. Podmínkou je, že téma se musí dotýkat matematiky nebo fyziky a musí být zajímavé. Návrhy témat posuzuje naše redakční rada, která vy braná témata uveřejní.
(2) M\&M se snaží hledat souvislostì mezì matematikou a fyzikou a krapet i informatikou, nikoliv však násilně. Bezpochyby mezi těmito obory lidského smŷ́lení nečiníme umělé hranice. Fyzika matematiku poť̌ebuje a mnohy matematicky problém zase pochopíme na názorném fyzikálním příkladě.
(3) Úlohy v M\&M jsou rozloženy v celém spektru slơ̌itosti. Každy si zde může vybrat, co ho baví a na co stačí - to platí o úlohách i o tématech. Z článků, které nám napíšete, se na naše stránky dostanou ty nejlepší a nejzajímavêjesí.
- Jak M\&M probíhá?

M\&M se mů̌̌e zúčastnit každý středoškolák, který má dostatek chuti a času. Pokud se rozhodnete M\&M f̌ešit, budeme vám na vaši adresu časopis zasílat (samož̌ejmě zdarma). V časopise naleznete vždy zadání ty̌í tzv. "rekreačních úloh" a občas zadání nových témat. "Rekreační úlohy" jsou př̂́klady, které najdete v podobných seminárích - jsou jasně zadané a žádá se u nich jasné y̌ešení. Vhodné jsou zvláště pro dobu kdy se rekreujete. Někdy mají podobu hádanek, jindy fyzikálních úvah apod. O tématech jsme již hovơ̌ili. Podǎ̛íli se vám vyřešit nêjakou z úloh anebo zaujme-li vás některé z témat, mư̌̌ete nám svá řě̌ení a postř̌ehy zaslat na adresu semináře, která je uvedena na konci tohoto letáku.

Rešení úloh posílejte do termínu, který pro každou sérii stanovíme. Pozdní odeslání Y̌ešení rekreačních úloh tolerujeme jen výjimečně. Rozhodující je přitom datum na poštovním razítku. Na ̛̌̌̌̌ení každé série budete mít asi měsíc času. My vaše řešení vyhodnotíme a okomentujeme, nejlepší články k tématům otiskneme přímo v časopise. S novým číslem časopisu (ve kterém najdete tê̌ autorská f̌ešení úloh) pak dostanete zpátky svá okomentovaná fê̌ení i vědecké příspěvky. Ročně hodláme vydat asi 5 čísel časopisu.

- M\&M je, jak jsme již v úvodu zmínili, soutěží. Za každé Y̌ě̛ení úlohy nebo příspěvek k tématu obdry̌íte několik bodủ, jejichž množství bude určeno mírou správnosti vašeho ̛̌ešení, originalitou a nápaditostí článku, brìlantností vašich úvah. . Správné Y̌ešení rekreačních úloh bývá zvykem hodnotit asi 5 body, dobré články k tématům se cení třeba i na 10b. Dodejme, že nerozlišujeme bodování podle ročníku studia, jak to mnohé semináře činí. Volné pojetí témat totiž umož̌̆uje zvítězit i nejmladším řě̌itelŭm, jsou li dost aktivní. Na základě množství bodủ přiǐazených jednotlivým řě̌itelům posléze sestavíme pořadí, které budeme průběžně otiskovat na poslední straně časopisu. V závěrečné sérii provedeme celkové vyhodnocení a odměníme vítěze zatím neznámými, ale jistě hodnotnými cenami.

Hovoříme-li o hodnocení, neopomeňme zdůraznit jednu zvlášnost, kterou má pouze M\&M. Po překročení určitých bodových limitů totiž získáte pro účely seminăłe titul, kterým jsou vás povinni ostatní účastníci oslovovat. Příslušné bodové limity jsou: 10b (bakalář), 20b (magistr), 50b (doktor), 100b (docent), 200b (profesor), 500b (akademik). Do limitu potřebného pro dosažení titulu se započítávají i body získané v předchozích ročnících semináře.

- Konference M\&M

Pro nejlepší Y̌ě̌itele organizujeme každoročně alespoň jednu konferenci. Nechceme to zakf̌iknout, ale vypadá to zatím tak, že letos budou dokonce konference dvě. První by měla proběhnout v zimě někde na horách, na druhou se mưžete tě̌it asi tak v červnu. Účastníky budeme vybírat podle průběžného pơ̌adí.

Konference jsou příležitostí k seznámenís lidmì podobného smŷ̃lení, pro mnohaleté řešitele pak vhodným místem, kde potkat staré známé. Na podobných akcích se pak vedou vědecké polemiky, mǔ̌̌ete zde vyslechnout nebo tễ̌ sami přednést řadu přednášek. Protože konference jsou pořádány v přírodě, je nasnadě, že jejich program není pouze odborný (provozují se rozmanité hry a podobně). Všichni, kdo na podobné akci někdy byli, mi dají za pravdu, že nelitovali.

- Pokud jste vydrželi číst až sem, a M\&M vás zaujalo natolik, že jste se rozhodli jej řešit, pak pro vás máme ještě těchto pár drobných rad a podmínek soutẽ̌ze:
(1) K ̛̌ešení první série prosím přiložte lístek se jménem, ročníkem, adresou školy a Vaší adresou pro korespondenci.
(2) Každou úlohu (téma) pište na zvlâštní papír (různé úlohy obvykle opravují rǔzní lidé). Každý papír označte svŷm jménem a číslem úlohy, popřípadě číslem listu. K náležitostem vědeckého článku paty̌í jeho název a jméno autora. Nenazvete-li článek, vymyslíme pro něj v případě otištění název sami. Redakce si vyhrazuje právo články pro lepší srozumitelnost zestručňovat nebo upravovat, vždy však jen do té míry, aby nebyl změněn smysl článku.
(3) Nemusíte posílat ̛̌ešení všech úloh a témat. Vyberte si, co vás nejvíce zajímá. Ohodnotíme i náznaky y̌ešení (samož̌ejmě, vdě̌̌nêjǰ̌í budeme za ̛̌ešení úplná).
(4) Nepište jenom výsledky, ale podrobně nám vysvětlete postup, jak jste k nim došli. Pokud nám pošlete pouze výsledek (bytُ správny), na mnoho bodủ se netě̌̌te.
(5) Pište prosím opravdu, ale opravdu čitelně. Nad nečitelnými Y̌ešeními pak strávíme zbytečně mnoho času. Navíc je nemư̌̌eme objektivně ohodnotit.
(6) Svá řešení nám mưžete posílat na papíře (af už v rukopise nebo vytištěná počítačem), na disketě (preferujeme zdrojovy text pro sázecí systém TEXnebo čisty ASCII-text) nebo přes Internet e-mailem na adresu...
(7) Dodř̌ujte termíny odesílání rekreačních úloh. PY̌íspěvky k tématům můžete posílat po cely rok.
(8) Ve svých příspěvcích mư̌̌ete reagovat na články svých kolegủ. Budete-li používat výsledků práce někoho jiného, doporučujeme vám použité výsledky napsat formou citace.
(9) M\&M mưžete začít Y̌ešit kdykoli v průběhu roku.
- Na závěr několik slov o historii M\&M. Coby korespondenční semináry pro Středočesky kraj bylo M\&M založeno již na sklonku roku 1994. Zakladateli byli Martin Vyšohlíd a Martin Čí̌ek - oba studenti MFF UK. Současnými organizátory jsou další studenti Matematicko-fyzikální fakulty.

SOUTĚŽ

Ježto náš semináry, jak jsme zmínili, oslaví již čtvrté narozeniny, mưžeme hovořit o veliké a bohaté tradici. Proto vyhlašujeme po vzoru jistého nejmenovaného velkêho semináy̌e veřejnou soutěž o logo seminâ̌e, které by zdobilo první stranu našeho listu. Své náměty zasílejte na adresu semináre. Redakční rada v říjnu vybere (doufejme) alespon̆ jednoho vítěze. Doporučujeme vám vymyslet logo alespon̆ dvourozměrné. V případě vícerozměrného díla si však redakce činí právo otisknout libovolný dvourozměrny průmět artefaktu.

A ještě jedna prosba na úplný závěr. Máte-li možnost tento leták jakkoli rozšíritit na střední školy nebo třeba mezi své kamarády, o kterých víte, že se matematikou nebo fyzikou zabyvají, pak vás prosíme, abyste tak učinili.

Tở vše, přejeme vám hodně štěstí a zábavy při prácí, a protože je ještě ěerven, tak taky hezké prázdniny.

Zadání nových témat

Téma 1. Neukončená čísla

Všichni znáte počítání s přirozenými čísly N_{0}. Tato čísla se obvykle zobrazují konečnou posloupností cifer v nějaké soustavě, napy̌. desítkové. Zkusme tento číselny obor rozšǐ̌ìit na množinu obecnějuích (neukončených) čísel N_{0}^{\prime}. Tato čísla budou dána obecnou posloupností cifer. Tato čísla tedy budou mít vlevo od desetinné čárky nekonečně mnoho Îádů.

Na této množině zavedeme operace analogické operacím s přirozenými čísly:
"+" Sčítání se provádí od nejniž̌̌ích y̌ádů vy̌̌e stejně jako u py̌irozených čísel, analogicky se provádíi přenos do vyšících y̌ádů. Např. . . . $999999+1=0$. Odčítání zavedeme stejnym zpŭsobem.
"." P̛̌i násobení $A \cdot B$ vynásobíme číslo A postupně všemi ciframi čísla B a tyto mezivýsledky vzájemně posunuté o daný počet f̌ádů sečteme. Tento součin bude jednoznačně definován, protože cifra k. Y̌ádu ve výsledku bude záviset na ciffách $0 . . . k$. Y̌ádŭ součinitelủ a těch je pro každé konečné k konečně mnoho. Např. . . . $11111 \cdot 11=\ldots .22221$.
"/" U těchto čísel jde definovat inverzní prvek i v některých případech, kdy to u přirozených čísel nejde. Každé číslo B, které splňuje podmínku, že $A \cdot B=1$, nazveme inverzním prvkem vzhledem k násobení, tedy $B=1 / A=A^{-1}$. NapǏ. $1 / 3=\ldots 66667$.
Ačkoliv tato čísla nemají na první pohled žádné použití, dá se u nich studovat mnoho krásných problémŭ.
I. Charakterizujte čísla, pro která existuje inverzní číslo - bohužel ani v tomto oboru nebude existovat vždy.
II. Vymyslete algoritmus pro výpočet inverzního čísla.
III. Zkuste najít netradiční řešení zajímavyych rovnic, zde předkládám napǐ. rovnici

$$
x^{2}=x, \quad x \neq 0, \quad x \neq 1
$$

Téma 2. Lednička
Vysvětlete princip ledničky. Pokud nevíte, jak toto zǎ̛ízení vypadá, resp. funguje, použijte odbornou literaturu.

Vybaveni znalostí tohoto principu zkuste navrhnout vy tápění a ochlazování budov v létě a zimě. Spočítejte účinnost tohoto děje, zdali je to vy̧hodnějesí než napǔ. spalování uhlí.

Téma 3. Dláždění v rovině

Rovina se dá vydláždit mnoha způsoby. Jmenujme např. obdélníkové dlaždičky nebo čtvercové dlažební kostky. Těchto dláǎdění mư̌̌eme vymyslet libovolně mnoho, stačí kdyy̌ vyzmeme již existující kostičky, troơku jim zvlníme okraje (aby to ale zǔstalo symetrické) a nové dlǎždění je na světě.

Přesto mají tato dláždění mnoho společného. Ukazuje se, že existuje docela malé množství ty̌íd takových, že libovolné dlaždění patří do právě jedné z nich. Tyto třidy se vyznačují např. počtem sousedů jednotlivých kostiček, počet stý kajících se kostiček v každém rohu, množinou všech symetrií dlá́dě̌ní. . .

Na vás je, abyste nalezli všechny druhy dláždění a zdưvodnili, proč jich není více ani méně.

Zadání rekreačních úloh

Úloha č.1. Zahradní sprcha

Existuje zařizení, které se chová následujícím způsobem:

1. Prvních 10 minut do ně̌j pơ̆ád teče jedním otvorem voda, ven neteče nic.
2. Po uplynutí této doby najednou veškerýy obsah vyteče jinŷm ot vorem, zâ̌ízení se vyprázdní a cyklus začne znovu od začátku.
Vysvětlete a načřtněte, jak toto zařízení funguje. Ještě je nutno dodat, že ho lze sestrojit BEZ JAKYCHKOLI POHYBLIVYCH ČASTI. Mưžete použít různé nádoby, trubky a plechy, ale ne nap̌̌. dvouramenné váhy, které se posléze prevází.

Pokud první část vyřešíte, zkuste ještě oddiskutovat, jestli by skutečně fungovalo (i na druhý pohled) a jaké by mělo uplatnění v praxi. Nejlépe bude, když si jej sami sestrojíte a vyzkoušíte.

Úloha č.2. Kulečnik

Mějme kulečník. Je tvơ̌en obdélníkovou deskou stolu, která je ohraničena mantinely. Na vodorovné rovině kulečníku leží právě jedna koule. Do koule strčíme tak, aby se začala pro rovině stolu pohybovat. Předpok ládejme, če při srážkách s okraji stolu ani během valivého pohybu nedojde ke ztrátám pohybové energie koule. Bude pak vždycky existovat úsečka MN, po které se koule během svého putování bude pohybovat dvakrát? Kolik bude takových úseček a kolikrát se po nich koule bude postupně pohybovat?

Úloha č.3. Šneček provazochodec

Mezi body A a B je nataženo 1 m dlouhé lano. V bodě A stojí ̌̌nek. V čase $t=0 \mathrm{~s}$ se začne šnek plazit rychlostí $1 \mathrm{~mm} \cdot \mathrm{~s}^{-1} \mathrm{směrem} k$ bodu B. Bohužel se v témže čase začne bod B vzdalovat rychlostí $1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

Předpokládejme, že lano je dokonale pružné, tzn. že nikdy nepraskne a že šneček po prodloužení lana zůstane ve stejné části délky lana (míním tím, že byl-li v $1 / 3$ délky lana před prodloužením, zůstane tam i potom). Určete, zda se šnečkovi padaří doplazit se do bodu B, paklǐ̌e ano, tak za jak dlouhou dobu.

