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Uvnitf najdete nékolik témat a s nimi souvisejicich Gloh. Zamyslete se nad nimi a poslete
nam sva resSeni. My vam je opravime a ta nejzajimavéjsi z nich otiskneme. Nejlepsi feSitele
zveme na podzim a na jafe na soustfedéni.
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Mili FeSitelé,

skolni rok se ndm prekulil do druhé poloviny a spolu s nim i celém M&Mko.
Vanocni vikendovka uz je za ndmi, pfiprava jarniho soustfedéni v plném proudu
a vy drzite v rukou uz ¢tvrté ¢islo naseho ¢asopisu. Co najdete uvniti?

S velkou slavou se vraci tématko Grupy, opét odéno ve fyzikalnim havu. Kdo se
boji kvantovky, nesmi do lesa symetri{ (leda Ze by byl velmi odvdzny). Pokud jste
se s prvnim dilem tématka Kombinatorika naucili poc¢itat, urcité nesmite minout
dil druhy. Dozvite se, jestli jste to minule spocitali spravné, ale hlavné ziskate
dovednost pro matematika jesté zdsadnéjsi — totiz jak nepocitat. Informaticka
archeologie bude také pokracovat, proto si nachystejte své zavorky. Tématko LISP
prichazi s meta-programovanim v podobé maker! A kone¢né Sifrovaci tématko se
strategickym ¢islem 26 vam prinds{ (kromé feSeni z minula) dalsi sadu dimyslné
promyslenych Sifer od ostatnich Tesitelt.

Tématka Brainfuck, Vijpocetni geometrie a Elektrostatika se s ndmi v tomto
Cisle rozlouci skrze feseni diive zadanych uloh a problémt, at uz organizatorska,
nebo pfimo od vas.

Prejeme prijemné ¢teni a tésime se na vidénou!

Vasi orgové MEM

.
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Téma 1 — Grupy aneb Kterak matika k soumérnosti
prisla
Dil 3: Kalibra¢ni teorie
Treti dil naseho tématka zamysli ukovat slibované pouto mezi teorii grup a stan-
dardnim modelem ¢&sticové fyziky. Onim poutem jsou tzv. kalibracénd teorie (angl.
gauge theories) — teorie pole, jejichz lagrangidn je neménny vici lokdlnim transfor-
macim. Nezoufejte, necekali jsme, ze vyréenou vétu bez pomoci pochopite. Thned

se jmeme vysvétlit. Podotykdme vSak, Ze — podobné jako v dile minulém — budeme
ponékud volné vyuzivat jazyka linedrni algebry?.

Kvantové teorie pole
Ve fyzice znadi slovo pole fyzikalni veli¢inu, jez je popsana pomoci skalaru, vektoru
& tensoru? nabyvajictho hodnoty v kazdém bodé éasoprostoru. Obyéejné budeme,
zanedbéavajice ¢asovou slozku, mluvit prosté o hodnoté poli v bodech prostoru.
Uvedme par priklad.

Polem, jez je popsané jedinym Cislem (tedy skaldrem), muze byt napiiklad
teplota. Lze ji vnimat jako funkci T'(x,y, 2, t), jez obdrZ trojici (x,y, z) soufadnic
v prostoru a Cas t a vrati teplotu v daném bodé a cCase.

Prikladem vektorového pole budiz proudéni vzduchu na povrchu Zemé. Di-
vejme se na né jako na funkci A(x,y,z,t), kterd kazdému bodu pfifadi vektor
(d1,dsz, ds) znacici smér vétru v bodé (z,y, z) a Case t. Velikost vektoru (dy, dz, d3)
pak vyjadiuje rychlost vétru.

Mezi tensorovymi poli najdeme kuptikladu tensor napeti. Vyberme si néjaky
vnitini bod télesa x = (x,y,2) a libovolnou rovinu prochdzejici timto bodem.
Tato rovina vlastné ,roziizne“ téleso na dva kusy. Jednotkovy vektor kolmy na
tuto rovinu (téz normdlovy vektor) ozna¢me n. Napéti (jako veli¢inu se smérem
a velikosti), které jeden kus télesa vytvaii na druhy kus v bodé x podél zvolené
roviny, mizeme vyjadiit jako vektorové pole S™ (x) o trech slozkich zavislé na
vektoru n (tj. na volbé roviny) a bodu x. OvSem, tento popis naznacuje, Ze napéti
v bodé x umime popsat pouze pomoci nekoneéného mnozstvi vektora S™ (x) -
jeden vektor pro kazdou jednu rovinu s norméalovym vektorem n. Zde prispécha na
pomoc tzv. Cauchyova véta o napéti®, kterd stvrzuje, ze staéi znat vektor S™ (x)
ve trech vzajemné kolmych rovinach prochézejicich bodem x. Jelikoz tii vzajemné

1Z4jemci o tuto stranku matematiky budte odkdzani na téméatko Vektory a matice z 31. roc-
niku.

20 tensorech lze premyslet jako o maticich, jejichz prvky mohou byt &isla (skalary) nebo téz
dalsi matice. Vice naptiklad zde: en.wikipedia.org/wiki/Tensor.

3Detailni popis tensorového pole napéti véetné jeho odvozeni pies newtonovskou mechaniku
hledejte naptiklad na engcourses-uofa.ca/books/introduction-to-solid-mechanics/stress/
cauchy-sensor-tensor/.


en.wikipedia.org/wiki/Tensor
engcourses-uofa.ca/books/introduction-to-solid-mechanics/stress/cauchy-sensor-tensor/
engcourses-uofa.ca/books/introduction-to-solid-mechanics/stress/cauchy-sensor-tensor/
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kolmé vektory tvori bdzi tridimensionalniho prostoru, lze déle odvodit z této véty,
7e existuje 3 x 3 matice o (x) nezdvisla na n, pro kterou plati, ze S™ (x) = (x) -n.
Receno slovy, matice o (x) obsahuje informace o stavu napéti (ve ,viech smérech®)
v bodé x. Na napéti se procez muzeme divat jako na tensorové pole o(z,y, z,t),
které danému bodu x = (x,y, z) pfitadi matici o(x) popisujici napéti v tomto
bodé v case t. Tusime, Ze tento odstavec byl velmi objemny. Kéz zmateni zmirni
visualni doprovod v podobé obrazku 1.

Obrazek 1: Slozky tensoru napéti v bodé krychle vzhledem ke tfem vzajemné kolmym
rovindm (sténdm krychle). Hodnoty o;; pfedstavuji slozky matice o

Y

Nemame vam za zlé, cténi ctenari, podezirate-li nas ze zbytecného obchvatu.
Preci, k ¢emu nam je popis fyzikalnich veli¢in pfes pole, kdyz nas zajimaji ele-
mentérni ¢astice? Céstice nejsou veli¢iny. Ci ... jsou? Jako mnoho véci v kvantové
mechanice — jsou i nejsou. Totiz, co presné nazveme fyzikalni veli¢inou? Napriklad
teplo intuitivné vnimame jako ,vlastnost* télesa, kterd se mtze v jeho riznych bo-
dech ligit. Spatné udélany steak je na povrchu horky, ale vevnitt studeny. Nicméné,
prechod od teplého bodu na povrchu ke chladnému vevnitt je plynuly — na tisecce
spojujici tyto body teplota klesd postupné, nikdy narazové. V tomto pojeti lezi
elementarni ¢astice nékde mezi svym intuitivnim pojetim jako isolovaného bodu
v Casoprostoru a tepelnym polem. Fakt, Ze elektron (¢i kterdkoli jind elementérn{
Céstice) ve hvézdé v galaxii Andromeda je dokonale totoZny s elektronem v kiovi-
nach parku Stromovka, naznacuje, ze v jistém smyslu je kazdy jednotlivy elektron
pouze lokalnim ,projevem® mnohem abstraktnéjsiho objektu: elektronového pole,
jez prochazi celym vesmirem. V ramci jednoduchosti si muzeme predstavovat, ze
je v dany cas toto pole nulové vsude ve vesmiru vyjma body, kde se nachazeji
elektrony. Elektrony jsou pak stabilnimi vykyvy v tomto jinak v zasadé nulovém
poli. Pro srovnani vizte obréazek 2.
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(a) Piiklad tepelného pole. (b) Piiklad elektronového pole.

Obrazek 2: Rozdil mezi klasickym a kvantovym polem. Pro prehlednost jsou obé pole
vykreslena pouze ve dvou dimensich prostoru.

Kvantova mechanika s sebou ovsem nese jisty svizel. Elementarni ¢éstice se ne-
chovaji stejné jako télesa, kterak jsou vnimana nasimi smysly. Totiz, elementarni
¢astice obyvaji nékolik mist najednou. Teprve jejich slouceni (formdlné superposi-
¢i) bychom mohli nazvat ,skutecnou polohou* ¢édstice. Jeden oblibeny, prestoze
nepresny, primeér je ke strunam na kytare. Kazda jednotliva struna vibruje s roz-
dilnou frekvenci (vyskou ténu) a amplitudou (hlasitosti). Teprve slouc¢en{ zvuki
vSech strun muzeme nazvat ,skutecnym zvukem* kytary. Kvantova pole v kaz-
dém bodé a case nabyvaji vice hodnot zaroven. Formalné se tento jev modeluje
ve fyzice tak, ze kvantova pole nabyvaji komplexnich hodnot misto redlnych. Tato
vlastnost kvantovych poli bude v dalsim textu dulezitd jen implicitné; presto jsme
shledali uzitecnym ji zminit.

Lokalni symetrie a kalibracni pole

Mezi hmototvornymi ¢ésticemi (fermiony) nachdzime tak zvané kvarky. Kazdy
kvark miize byt jedné ze t¥i barev — ¢ervené, zelené a modré. Této jejich vlastnosti
prezdivime barevny ndboj ¢i zkritka barva. Ovsem, jak je mozna zfejmé, slovo
,barva“ je zde pouze pohodlnym vyjadienim faktu, ze kazdy kvark* m4 vlastnost,
jez muze nabyvat tii rtuznych hodnot. Spojitost s obvyklym pojetim barev je
nulova. Tusime, bohuzel, ze v makroskopickém svété jen stézi nalézti vlastnost,
k niz bychom uméli barevny naboj kvarka primérit.

Existence barevného nédboje s sebou ihned prinési jistou symetrii. Skutecnost,
ze je konkrétni kvark Cerveny, zeleny ¢i modry, nema zadny fyzikalni dopad; jed-
na se o pouhé pojmenovani. Dulezity je pouze fakt, ze tii kvarky stejného typu

4Jednotlivé typy kvarkii vyjmenujeme v omezené mife pozdéji. Podrobny piehled hledejte
tfeba v ¢lanku https://en.wikipedia.org/wiki/Quark.


https://en.wikipedia.org/wiki/Quark
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(tj. t¥i vykyvy v témze kvantovém poli) mohou byt t¥{ riznych barev. Pfirovné-
ni lze uéinit pfipadem elektronu a jeho anti¢astice (tzv. positronu). Elektron m4
zaporny elektricky naboj, zatimco positron ma kladny elektricky naboj. Ovsem,
zda nazveme rozdilny naboj ,kladnym“ a ,zadpornym“ ¢i ,levym“ a ,pravym* ¢i
wslanym® a sladkym* je naprosto bezvyznamné. Smyslu nabyva pouze tvrdit, ze
ma-li elektron jisty elektricky naboj, pak positron mé ten druhy.

Do prostoru barevného naboje se tato idea prenasi primocare. Misto jednodi-
mensionalni redlné® piimky, na niz mizeme libovolné ¢&islo oznacit za elektricky
naboj elektronu, sobé predstavme tiidimensiondlni prostor s osami representujici-
mi kazdou ze tii zminénych barev. Za barevny naboj jistého kvarku nyni muzeme
zvolit libovolny vektor v tomto prostoru — ten predstavuje volbu ndhodného ¢is-
la na kazdé ze tii barevnych os. Jiny barevny naboj stejného kvarku pak bude
zkratka vyjadren odlisnym vektorem v témze prostoru.

Nyni, fakt, Ze konkrétni hodnota (vyjadiena vektorem) barevného naboje kvar-
ku je irelevantni, dava vzrast hned dvéma zdanlivé souvisejicim, ale prakticky od-
lisnym symetriim. Totiz, abychom naptiklad z cerveného kvarku vyrobili modry,
muzeme cely prostor zrotovat kolem zelené osy. Obecné, rotaci muzeme z ttidi-
mensionalniho vektoru vyrobit kterykoliv jiny vektor stejné velikosti. Provadime-
-1i tuto rotaci v kazdém bodé pole (tedy vlastné rotujeme barevny ndboj v celém
vesmiru naraz), hovoiime o symetrii globdlni. P¥iklady globalnich symetrif hledejte
v predchozim dile tématka; patii mezi né tamze diskutovand symetrie translacni,
spjata se zachovanim hybnosti.

Prestoze globélni symetrie maji ve standardnim modelu své misto, mnohem
predstavit. Ze vlastnosti kvantového pole nezkreslime pouhym piejmenovanim Ger-
venych kvarki na modré je vcelku prirozené; bdélosti hodné vsak je, ze kvantové
pole v kazdém bodé mizeme rotovat jinak! Konkrétné, rotaci v tfidimensiondl-
nim prostoru lze representovat vhodnou 3 x 3 matici. V kazdém bodé x = (z,y, 2)
prostoru volme matici rotace R(x) a barevny nédboj kvantového pole néjakého
kvarku v témZe bodé oznaéme ¢(x). Kvantovd chromodynamika® stvrzuje, 7e fy-
zikélni vlastnosti pole s barevnym ndbojem R(x)q(x) jsou dokonale neodliSitelné
od pole s nédbojem ¢(x).

Uvédomme si, co presné existence takové symetrie znamend: hodnoty ¢(x;)
a ¢(x2) mohou byt ve dvou bodech x; a x3 shodné, ale hodnoty R(x1)g(x1)
a R(x2)q(x2) rozdilné. Z modrého kvarku se mize na jednom misté stat cerveny
a na jiném zeleny bez jakékoliv pozorovatelné zmény fyzikdlniho systému, jejz
obyvaji. To vsak neznamend, Ze by barevny nédboj samotny nemél efekt — mod-
ry kvark s ¢ervenym interaguje jinak, nez se zelenym. Jak se tedy mutze stat, ze
vysledek interakce kvarki s ndboji ¢(x1) a g(x2) je stejny jako interakce kvarku
s ndboji R(x1)q(x1) a R(x2)q(x2)?

57 dtivodtt zminénych vyse obvykle komplexni. Zjednodusujeme za tcelem piistupnosti geo-
metrické predstavy.

6Disciplina studujici vlastnosti interakce mezi elementarnimi ¢asticemi pifmo souvisejicimi
s barevnym nébojem.
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Odpoveéd zni, ze musi existovat zptisob, jak porovnat barevné naboje dvou
kvarki, prestoze lze prostor tii barevnych os libovolné otacet v kazdém bodé
zvlast. Predstavme si, ze se jeden kvark blizi k jinému podél néjaké trajektorie.
Abychom jeho barevny naboj mohli po této trajektorii prendset spolecné s nim,
musime mit informaci o tom, co znamena udrzovat vektor konstantni vzhledem
k dané rotaci barevného prostoru v kazdém bodé drahy. Pfenosu vektoru podél
krivky tak, aby byl v kazdém jejim bodé konstantni, se v diferencialni geometrii
tik& paralelni prenos. Zjednoduseny piiklad vizte na obrazku 3, kde se kvark
s barevnym nabojem a v bodé x; blizi ke kvarku s barevnym nabojem b v bodé xs.
Jsou-li tyto dva nédboje z fyzikalniho pohledu ,;stejné“, bude vysledkem paralelniho
prenosu vektoru a z bodu x; vektor b v bodé xs. Za (silného) predpokladu, ze
barevny prostor rotujeme v jistém smyslu spojité (tedy ve dvou blizkych bodech
jsou provedené rotace podobné), miZeme si onen prenos predstavit jako postupné
rotovani vektoru a ve vektor b.

Obrazek 3: Paralelni prenos vektoru barevného naboje a z bodu x; do bodu x2. Vektor
b v bodé x2 predstavuje ,stejny“ barevny naboj jako vektor a v bodé x;.

Onu informaci“, jak prenaset vektor podél dané kiivky, zakédujeme v po-
naptiklad tensorové pole napéti zminéné v predchozi sekci. Totiz, abychom mohli
spocitat, kterému vektoru bude odpovidat vektor a v jistém bodé x dané krivky,
musime uchovavat informaci o tom, jak se v bodé x méni kazdy mozny vektor
barevného naboje v kazdém mozném sméru pohybu (smér pohybu je zde teény
vektor ke kiivce v bodé x). JelikoZ vektory barevného naboje i pohybu kvarku mu-
Zeme vyjadrit vzhledem ke zvolenym bézim (napriklad barevnych os pro barevny
néboj a souradnicovych os pro 3D prostor) definujeme 7'(x) vzhledem k témto bé-
zim jako 3 x 3 matici, jejiz prvky jsou vSak opét 3 x 3 matice. Naptiklad, vnitini
matici na pozici (1, 3) (prvni fadek, treti sloupec) vnéjsi matice T'(x) bude matice,
ktera vektor lezici na prvni barevné ose otoci tak, jako bychom jej posouvali po
kiivce, kterd ma v bodé x smér tieti souradnicové osy.

Tensorovym polim, kterd umoznuji paralelni prenos vektort po krivkéch, se
v diferencidlni geometrii rika koneze a snadnéji se predstavuji jako funkce, které
dostanou dva vektory a vrati jeden. V nasem pripadé obdrzi vektor barevného
naboje a vektor sméru pohybu v daném bodé a vrati vektor predstavujici ,stejny*
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barevny naboj. Ze je takovato funkce ekvivalentni pravé popsané matici T'(x) zde
obhajovat pro tsporu mista, casu i duchovni kapacity nebudeme.

Prisel-li vam predchozi odstavec prilis komplikovany, nebédujte; s tensorovymi
poli nebudeme potiebovat nic pocitat, ani se o nich nijak sifeji zminovat. Shrnuto,
aby mohl barevny nédboj kazdého kvarku vykazovat lokalni symetrii, musi existo-
vat kvantové pole, které v sobé nese informace, diky kterym lze barevné naboje
dvou kvarkt porovnat s ohledem na provedené lokalni transformace. Takovym
polim se obecné (tedy i v pripadé veli¢in ruznych od barevného ndboje) ¥ikd ka-
libracnd.

Doufame, ze pravé premyslujete, k ¢emu to celé vede. Inu, kalibrac¢ni pole
nejsou jen vyplod nespoutané predstavivosti teoretickych matematiki; maji sku-
tecnou fyzikalni podobu, a to pravé v podobé silonosngch ¢astic! Vskutku, fluk-
tuace kalibracnich poli jsou presné ty Castice, jimz fyzikové fikaji kalibracni bo-
sony a které zprostiedkovavaji tii ze ¢tyr tzv. zakladnich sil: elektromagnetismus
a slabou a silnou nuklearni silu. Ovsem, v zavéru pravé ucinéné diskuse je snad
intuitivné nevhodné uvazovat o kalibracnich bosonech jako o nositelich ,sil* —
priklanime se spiSe k predstavé nositeli ,informace®. Takze, ¢astice ,,infonosné“,
,datanosné“...?

Po velké objizdce putujeme konecné k cili, kde aspon zevrubné popiseme kvan-
tova pole konkrétnich elementarnich castic a kalibrac¢ni pole, jimz lokalni symetrie
téchto kvantovych poli dévaji vzniknout.

Elektromagnetismus

Elektron patri mezi elementarni ¢astice zvané leptony — hmototvorné ¢astice, kte-
ré narozdil od kvarkti nemaji barevny nédboj; maji vSak naboj elektricky. VSechny
elementarni ¢astice maji rovnéz vlastnost zvanou spin, jiz vsak s cilem jednodu-
chosti zanedbame. Procez, elektricky ndboj budeme vnimat jako jedinou zasadni
vlastnost elektronu a elektronové pole pro nas bude komplexni skaldrni pole znace-
né 1, . Pripominame, ze komplexnost pole ¥.- modeluje fakt, Ze se pole nachazi
ve ,vice stavech zaroven“.

Jak jsme nahlédli jiz v minulé sekci, konkrétni hodnota elektrického naboje je
irelevantni, dulezita je pouze schopnost porovnat elektricky ndboj dvou ¢astic. Po-
dobné jako barevny naboj, i elektricky naboj vykazuje lokdlni symetrii vzhledem
k jeho zméné na libovolné jiné komplexni ¢islo stejné velikosti. Nahlédneme-li na
komplexni ¢&islo .- (x) jako na bod v komplexni roving, pak vSechna komplexni
c¢isla o stejné velikosti lezi na kruznici se stfedem v pocatku a polomérem praveé
této velikosti.

Zde bychom radi privedli vasi pamét zpét ke grupé i, z tlohy 1.5 prvniho
dilu tématka. Tam jsme zpozorovali, ze komplexni c¢isla ¢**F viechna le#f na
(komplexn{) kruznici o poloméru 1 a tihel mezi dvéma po sobé jdoucimi je presné
27 /n. Na tento geometricky fakt se di pohlédnout i jinak: totiz, miZeme spocitat,
ze

etk 1)3E _ iZE | ik3E
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¢ili nasobeni Gislem ¢/ vlastné otoéilo &fslo % o thel 27/n. Bez dikazu
tvrdime, Ze tento argument funguje zcela obecné. Pro libovolné ¢islo z € C a tihel
6 € [0,27) plati, ze 'z je ¢islo z otoGené o tihel f. Vizte obrazek 4.

Im

Obriazek 4: Rotace komplexniho ¢isla z € C o thly 7/4 a /2.

Nyni uz mizeme definovat grupu lokalnich symetrii elektronového pole. At
x je jako vzdy bod prostoru a 6(x) € [0,27) je thel zavisly na x. Fakt, Ze pole
lze v kazdém bodé zvlast rotovat o libovolny thel a nezménit tak jeho chovani,
znamend, ze hodnotu .- (x) mizeme nahradit hodnotou e?®,_ (x). Snadno
ovéfime, 7e pro kazdy thel # mé komplexni &slo e velikost 1 a soudin dvou
takovychto ¢isel ma rovnéz velikost 1. Z toho plyne, Ze mnozina

{e" |6 <0,2m)}

tvori grupu vzhledem k béZnému nésobeni komplexnich éisel. Znacime ji U(1).
Neformélné na ni mizeme nahlizet jako na grupu, kterd vznikne z grupy i,,, kdyz
¢islo n ,posleme do nekonecna“. Tuto myslenku podpird geometricka predstava,
ze kruznice je ,mnohothelnik s nekone¢né mnoha vrcholy*.

Pravé popsana lokélni symetrie elektronového pole zarucuje existenci kalib-
rac¢niho pole umoznujiciho porovnat elektricky naboj dvou ¢astic podél dané kriv-
ky. Vykyvim tohoto pole se Tiké fotony, ¢astice svétla, a zdkladni sile, kterou
zprostiredkovavaji, elektromagnetismus. Tusime, ze predstava svétla jako ,nosice
informace o rozdilnosti elektrického ndboje®, bude radé ¢tenait nova.

Ve sledu vysledku Emmy Noether o souvislosti mezi symetriemi a zachovanymi
velicinami diskutovaném v minulém dile snad neni prekvapivé, ze lokalni symetrie
elektronového pole s sebou nese zakon zachovani elektrického naboje ve smyslu,
ktery pravé popiseme. Totiz, vagni formulace ,,neméni chovani fyzikalniho systé-
mu®, jiz jsme v prubéhu tématka nékolikrat pouzili, mé formalni paralelu v tvrze-
ni, ze lagrangian tohoto systému je neménny vici uvazované lokélni transformaci.
V piipadé elektromagnetismu onen systém obsahuje elektronové a fotonové pole”

7Pfesnou podobu lagrangiinu kvantové elektrodynamiky zde uvadét pro slozitost nebude-
me. Lze nalézt na https://en.wikipedia.org/wiki/Quantum_electrodynamics#Mathematical_
tformulation.


https://en.wikipedia.org/wiki/Quantum_electrodynamics#Mathematical_formulation
https://en.wikipedia.org/wiki/Quantum_electrodynamics#Mathematical_formulation
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(to oznad¢ime pismenem «), jez spolu interaguji. Lagrangidn, jak zndmo, je roz-
dil kinetické a potencialni energie systému. Potencialni energie systému zavisi na
hmotnostni energii ¢astic. Hmotnostni energie elektronu zase zavisi na hodnoté
|9 (x)]?, tedy vlastné na absolutni hodnoté &sla 1, - (x). Tuto skutecnost je nad
ramec tématka plné objasnit; intuici snad trochu pomuze myslenka, ze pod hmot-
nosti si obycejné predstavime kladné realné ¢islo. Zustava tato hodnota konstantni
i po transformaci - (x) — €™y, _ (x)?
Vskutku ano. Totiz, pro libovolné komplexni ¢islo z € C plati
|2|? = Zz,

kde Z znaéi &slo komplexné sdruzené k z. Je jednoduché spoéitat, ze et = =%,
a tedy

€0, (x)[2 = G, (), (x) = e~ DY@y, (x)
T () = T W () = o WP,

tedy hmotnostni energii elektronu je opravdu neovlivnéna. Nabizi se vsak otazka,
¢emu odpovidd hodnota .- (x)? Inu, predstavuji-li hodnoty .- (x) elektrony,
pak hodnoty pole 9. (x) popisuji positrony, ¢astice s ndbojem opacnym elek-
trontim. Tim se dostavame k jadru véci. Totiz, energie systému rovnéz zavisi na
interakci mezi fotonovym polem ~ a elektronovym polem w.-. Matematicky se
takovd interakce projevuje pouhym soucinem vyrazu zavisejicich na hodnotéach
obou poli. Ovsem, fotony jsou Castice bez elektrického naboje. Aby nedoslo ke
zméné lagrangianu vlivem lokalni symetrie, musi tento ,interakéni ¢len® obsaho-
vat soucin fotonového pole s vhodnym vyrazem citajicim stejny pocet elektront
i positronti (pro vykréaceni &sel e?® s ¢isly e=?®)). Ve skutecnosti nastéva nej-
jednodussi situace — onen souéin je pravé v(x) - .- (x)¥.- (x) a predstavuje pravé
zéakon zachovani elektrického naboje. Riké totiz, Ze pii interakci elektronu a posi-
tronu — dvou ¢éastic s opa¢nym elektrickym nabojem — dochazi ke zrodu fotonu —
¢astice s nulovym elektrickym nabojem.

Timto jsme samozfejmé nedokézali, ze symetrie .- (x) — €™, _ (x) zacho-
vava lagrangian kvantové elektrodynamiky; to je zcela nad ramec tématka. Pouze
jsme poukéazali na omezeni, jez lokalni symetrie elektronového pole klade na ¢leny
tohoto lagrangianu a jejich fyzikalni interpretaci.

Slaba nuklearni sila

Slabd nuklearni sila je interakce prendSena tfemi typy bosoni — tak zvanymi
W+ W™ a Z bosony. Jeji existence je ekvivalentni (nedokonalé) lokalni symetrii
vlastnosti jak kvarkt, tak leptoni, (tedy vSech fermiontt — hmototvornych ¢dstic)
zvané vuné. Tuto vlastnost nebudeme zkoumat tak podrobné jako elektricky né-
boj a zistaneme ve svém vyjadreni spiSe strozi. Vuné kazdé ¢astice muze nabyvat
jedné ze dvou hodnot, representujeme ji procez jako komplexni vektor o dvou
slozkach. Zde musime striktné vzato hovorit o neiplné symetrii, nebof existuje
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Sest rtiznych druht viné — tii pro kvarky a tfi pro leptony — a hmototvorné castice
se déli na generace podle toho, ktery z téchto druh@t mohou vlastnit. Pro jejich
seznam vizte tabulku |1. Napriklad kvark prvni generace muze vonét bud nahoru
nebo doli a jeho kvantové pole je lokalné symetrické vzhledem k zameéné téchto
dvou hodnot. Avsak, kvarky druhé generace voni podivne, nebo puvabne. Nemuze
se stat, aby kvark druhé generace vonél treba dola.

Tabulka 1: Fermiony standardniho modelu po generacich vuné.

I. II. II11.
Kvark u horni ¢ puvabny t svrchni
varxy d dolni s podivny b spodni
L Ve el. neutrino v, mi. neutrino v, ta. neutrino
ePtony .~ cloktron ©~ mion T~ tauon

V tloze 2.2 minulého dilu jsme nahlédli, jak vypadaji matice rotaci o dany
thel v readlném prostoru o tfech dimensich. Dvé jejich vlastnosti jsou vyznamnéjsi
nez jiné: pro matici rotace R plati RT R = I a jeji determinant je roven 1. Pro
ted bez dikazu budeme tvrdit, ze tyto dvé vlastnosti charakterisuji uplné vsechny
matice rotace (o libovolny thel kolem libovolné ptimky) v R3. Pro nés je kli¢ové,
ze v komplexnich prostorech 1ze matice rotaci charakterisovat velmi obdobné.

Je-li X € C™*™ komplexni matice o m Fadcich a n sloupcich, tak k ni hermi-
tovsky sdruzenou matici definujeme jako transponovanou matici k X, kde kazdé
¢islo nahradime jeho komplexné sdruzenym. Znac¢ime ji X*. Naptiklad, je-li

X — (1 —|—-i 2 - —2—2i) e C23,
7 0

-5 33—
pak
1—1 )
X* = 2 3414 | € C3*2,
-2+ 2 0

Na hermitovské sdruzeni se miizeme divat jako na paralelu transponovani ma-
tic v redlnych ¢islech. Velmi mnoho vlastnosti transponovanych realnych matic se
prenasi na hermitovsky sdruzené komplexni matice. Jednim prikladem je praveé
charakterisace rotacnich matic. Totiz, matice popisujici rotace v komplexnim pro-
storu jsou pravé ty matice X s determinantem 1, pro které plati, ze X*X = I.

Protoze viiné je dvoudimensionalni komplexni vektor, jeji lokalni symetrii bu-
de otoceni na jakykoliv jiny vektor stejné velikosti. Z predchoziho odstavce zndme
grupu matic zodpovédnych za takové transformace. Znac¢ime ji SU(2). Symbolic-
ky,

SU@2)=({X eC¥? | X*X =TadetX=1},-,7",1),
¢ili SU(2) je mnozina komplexnich 2 x 2 matic udévajicich rotace spolu s béz-
nym nasobenim a invertovanim matic. Ponékud prostoduse muzeme tvrdit, ze
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slabd nukledrni sila existuje jako dusledek lokalni SU(2)-symetrie vini fermioni.
Zavérem vam na mysl pfivedeme jedno zajimavé pozorovani. Nejmensi mozny po-
Cet rodin generatoru SU(2) je tr4, jako je i pocet ruznych kalibraénich bosoni
zprostiedkujicich slabou nukledrni silu. Rodinou (¢i Gplné jednoparametrickou ro-
dinou) generatort zde myslime mnozinu matic z SU(2), které zdviseji na pouze
jednom (komplexnim) parametru. Naptiklad, celd grupa U(1) je takovou rodinou,
nebot kazdy jeji prvek lze napsat ve tvaru e?, kde onen parametr je pravé thel
#. Dalsim prikladem muze byt tFfeba mnozina vSech matic

(6 °)

Silna nuklearni sila

pro néjaké realné cislo a.

Zakuskem tohoto dilu tématka je silnd nukledrni sila, spjata s lokdlni symetrii
barevného naboje, ktery jsme jiz zminili. V zasadé 1ze jeho predchozi zhmotnéni
v predSedsim textu prenést plynule sem s tim rozdilem, ze barevny naboj kvarku
(leptony barevny ndboj nemaji) je komplezni t¥islozkovy vektor. Lokalni symetrii
barevného naboje je rotace tohoto vektoru na kterykoliv jiny o stejné velikosti
v kazdém bodé zvlast. Jako v pripadé slabé nuklearni sily, i zde takovou trans-
formaci popisuji komplexni matice X — tentokrate 3 x 3 — jejichz determinant
je roven 1 a spliiujici X*X = I. Grupé takovych matic darujeme symbol SU(3).
Nenli jiz nic, co bychom si ptali o barevném néboji vyrknout a neucinili jsme tak
jiz drive. Jediné snad ponoukneme vase cenné sedé bunky mozkové informaci, ze
SU(3) lze generovat osmi jednoparametrickymi rodinami matic — takovy je i podet
riznych castic silné nuklearni sily, tzv. gluond.
Matematicka formulace standardniho modelu

Vzhledem k objemu tohoto dilu ndm prijde zdhodno ucinit jisté zavére¢né shrnuti,
nez standardni model ¢asticové fyziky nadobro i nazlo opustime. Elementarni ¢as-
tice délime na hmototvorné (fermiony) a silonosné (mezi nimi kalibra¢ni bosony).
Vlastnosti fermiond vykazuji jisté vyznamné lokalni symetrie, které lze vysvét-
lit existenci kalibra¢nich poli zprostiedkujicich interakce mezi fermiony. Casticim
téchto poli fikame kalibra¢ni bosony a jsou zodpovédné za tii ze ¢tyt zakladnich
interakei ¢i sil. Kdyz fyzikové hovoii o ,matematické formulaci“ standardniho
modelu, obyc¢ejné maji na mysli kartézsky soucin grup

U(1) x SU(2) x SU(3),

ktery v sobé nese témér dplnou informaci o lokalnich symetriich fermionovych
poli. Elektricky naboj leptonu je lokalné U(1)-symetricky, coz garantuje existenci
fotonil — Castic svétla. Viné kvarkt i leptont zase vykazuje SU(2)-symetrii a davd
vzniknout W+, W~ a Z bosontim, nositeltim slabé nukledrni sily. Koneéné, barva
kvarku je lokdlné SU(3)-symetrickd a interakci, kterou pridruzenych osm typi
gluonu umoznuje, zveme silnou nuklearni silou.
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Uloha 4.1 [3b]: Dokaste, Ze

SUM) = ({X e C™" | X*X =1 a det X =1},-,7*, 1),

je opravdu grupa. Smite pouzit kterychkoliv vlastnosti matic a jejich determinantu
z témdatka Vektory a matice z predchoziho rocniku.

Uloha 4.2 [az 12b]: V sekci o slabé nukledrni sile jsme turdili, Ze SU(2) lze gene-
rovat tremi rodinami komplexnich 2 X 2 matic. Postupné vds provedeme dukazem
tohoto turzeni. Rozdelili jsme jej na cdsti, abyste si mohli zvolit, kterym se hodldte
vénovat. Za jednotlivé casti lze ziskat body zvldst.

1. Dokazte, Ze kazdd matice X € SU(2) lze napsat ve tvaru

pro komplexni ¢isla a,b € C.

(a)

(b)

(c)

(d)

[1b] Predpokiddejte, Ze X je obecnd 2 x 2 komplexni matice, ¢ili

a b
o= (2 a)

a rozepiste, které vsechny rovnosti pro cisla a,b,c,d € C plynou z pod-
minek X*X = I a det X = 1. Nezapomeiite, Ze 2z = zz = |z|? pro
jakékoli z € C.

[1b] Upravte rovnost |a|*+[b|* = |c|*+|d|* plynouci z X* X = I tak, aby
obsahovala pouze ¢isla b a c. Doporucujeme vyuzit rovnosti det X =1
alc]?+|d? =1.

[2b] Odvodte, Ze ¢ = —b. Nabizime ti pomiicky. Plati z + % = 2Re(z)
pro jakékoli z € C, kde Re(z) je redlnd cast cisla z. KdyZ si uZ ne-
budete védét rady, jak vyraz ddle upravit, doporucujeme cisla b a c
prepsat do ,,algebraického” tvaru x + iy. Konecné, ¢ = —b pravé tehdy,
kdyz Re(c) = —Re(b) a Im(c) = Im(b), kde Im pro zménu znaci cdst
imagindrni.

[1b] Znovu vyuZijte rovnosti X*X = I a vysledku z (c), abyste dokdzali,
Zed =Ta.

2. [1b] Vezméme uhly o, 8 € [0,27) a uvaime dvé rodiny matic:

B el 0 ([ cosfp sing
Z(@) = ( 0 e_m) » Y(B) = <— sin 8 cosﬁ) '

Ukazte, ze Z(«) i Y (B) jsou matice z SU(2) pro kaZdé o, 8. Argumentujte,
Ze jejich soucin je téZ matice z SU(2).
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3. [2b] Ukazte, Ze kaZdd matice X € SU(2) lze zapsat jako soucin i matic
z téchto rodin jako
X =2Z()Y(B)Z(7)

pro vhodné dhly a, B, € [0, 27). Napovime, Ze je uZitecné pouzit tvar matice
X zbodu 1. a téz si wvédomit, Ze rovnost |a|?>+|b|? = 1 klade dirazné omezeni
na mozné hodnoty cisel a,b € C.

4. [4b] Dokdzali byste geometricky interpretovat (s dostatecnym komentdrem)
matice Z(a) a Y(B). Co vlastné ,délaji“ s dvoudimensiondlnimi komplez-
nimi vektory? Muzeme si posléze néjak predstavit i jejich soucin?

Problém 4.3: Ezxistuje domnénka, Ze i gravitace, joko cturta fundamentdlni in-
terakce, je zprostredkovdna hypotetickymi (ve smyslu ,nenamérengmi®) bosony,
zvanymi gravitony. Ty by vznikaly dusledkem lokdlni symetrie tensoru energie
a hybnosti. Hrubé receno md tento tensor ctyri slozky — tri prostorové a jednu ca-
sovou. Lokdlni symetrie, kterd jej transformuje, spocivd v rotaci zvldst prostorové
a zvldst casové, tedy v rotaci, kterd sice transformugje cely casoprostor, ale pro-
storové souradnice se nesméji ,prolnout” s casovymi. Dokdzali byste najit grupu
takovgch transformaci?

Pri reseni problému smite vyuzit jakékoli online zdroje, dokud je pochopite
a dokdzZete vysvetlit.

Problém 4.4: Jak jsme v témdtku jiz zminovali, pocet proki z jednoparamet-
rickych rodin, ktery je potreba na vyjddrent libovolného prvku z grupy lokdlnich
symetrii dané vlastnosti fermionu, odpovidd poctu bosonu, jez ztvdarnuji prislusnou
fundamentdlnd interakci. Tedy, v pripadé elektrického ndboje, jehoz grupou lokdini
symetrie je U(1), je timto bosonem pouze cdstice svétla. V pripadé chuté a SU(2)
jsou to tri bosony a v pripadé SU(3) (kde kaZdd matice lze napsat jako soudin
osmi matic zavislych na jednom parametru) je cdstic nesoucich silnou nukledrni
stlu osm. Zkuste tento jev vysvétlit.

Pri reseni problému smite vyuzit jakékoli online zdroje, dokud je pochopite
a dokdzZete vysveétlit.

Adam, Jdchym; grupytematko@gmail.com
odevzddvejte do odevzddvdtka
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Regeni 2. dilu
Uloha 1

Zadani:

Vymyslete mozny konfiguracni prostor, ktery lze pouzit k popisu fyzikdlniho systé-
mu dvojitého kyvadla®, tedy systému, kde je na jednom kyvadle zavéseno druhé.
Nemusite byt rigorosni; staci uvést mnozinu s intuitivnim objasnénim duvodu jeji
volby.

Reseni:

U dloh tohoto typu ¢lovék casto rychle skace k nejjednodussimu feseni; my se
ve jménu konstruktivity pokusime k feseni probrat podrobnéji a ze vsech stran.
Zacneme s co nejvice informacemi o systému a budeme postupné vyrazovat ty
prebytecné nebo neménné.

Na zacatku je také dulezité zminit, ze neexistuje jeden nejlepsi konfiguracni
muzeme ucinit pouze s cilem v mysli, ktery my postradame, a tak jich ukdzeme
vice.

Vsechny rozumné veli¢iny, které miazeme uvazovat v systému o dvou kyvadlech,
jsou znazornéné na obrazku 5. Jde o thly obou kyvadel od vodorovné osy (61, 62),
délky jednotlivych kyvadel (11, l2), vahy hmotnych bodi na konci kyvadel (m1, ma)
a nakonec rychlosti téchto hmotnych bodu (¥, ¥2).

Obrazek 5: Zajimavé veli¢iny v systému dvou kyvadel.

Jako prvni vyfadime z konfigura¢niho prostoru vsechny konstantni veli¢iny.
V nasem pripadé se jednd o ly,ls a mi, mo. Ty technicky nevyrazujeme Gplné,
stale je potiebujeme pro pocitani, ale svoji neménnosti napri¢ stavy konfigurac-
nimu prostoru nepridavaji nic zajimavého.

8Vizte napf. en.wikipedia.org/wiki/Double_pendulum.
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Zbyly nam tak dvé dvojice proménnych, o nichz rozhodujeme, zda jsou vhodné
pro konfigurac¢ni prostor. Dvojice 1ihlt oc¢ividné vhodna je, protoze kazdy stav je
touto dvojici jednoznac¢né urcen. Dvojice rychlosti tuto vlastnost bohuzel nema,
ilustrujeme si nejednoznacnost na piikladu: Predstavte si, ze dostanete dvojici
rychlosti (0, 0), jak byste nakreslili dvojité kyvadlo? Tak je jasné, Ze obé kyvadla
budou ve svém nejvyssim bodé, ale kde takovy bod je? To z dvou nul nezjistime.

Abychom dostéali svému slibu ukézat vice nez jeden mozny konfigura¢ni pro-
stor, poukdzeme na to, ze zakonceni kazdého kyvadla ur¢ime jednoznacné jeho
soufadnicemi — néjakou dvojici z R?. Tyto body méme dva a tak za konfiguraéni
prostor mame R*.

Ti teorie dimenze znali z vas si urcité povsimli jedné domnélé nesrovnalosti
mezi konfigura¢nimi prostory zde prednesenymi. Pokud prostor popiseme pomoci
Ghl, mé dvé dimenze — je to viceméné R2, zatimco pouzivse soufadnice mame
najednou dimenze ¢tyri. Za tento zmatek v dimenzich si muzeme, jako vzdy, sa-
mi; v druhém piipadé mame prosté nékteré informace navic a dvé dimenze jsou
nedosazitelné. Tento problém muzeme podle réeni ,moudrejsi ustoupi® ignorovat,
dokud ovSem dostaneme néco nazpét (napiiklad pruzraénéjsi vhled do problema-
tiky nebo jednodussi vypocty).

Uloha 2
Zadani:
1. Dokazle, Ze matice R.(6) je opravdu matici rotace kolem osy x o thel 6.
Pripadny obrazek, prosime, nezapomernte doplnit rozumngym argumentem.

2. Dokazte, Ze z rovnosti y = R, (6)x opravdu plyne rovnost y = R, (0)x.
3. Dokazte, Ze plati R, (0)TR,(0) = 1.
Reseni:

1. Prvni zjednodusSeni celého problému se naléza v pozorovani, ze matice R, (6)
pri soucinu

1 0 0 T T
0 cosf —sind y | = | y(cosf —sind)
0 sinf cosf z z(sin @ + cos 6)

nijak neméni z-ovou soufadnici. Coz je jednak vlastnost, kterou bychom
ocekavali, a druhak vlastnost, jez nam dovoli se na problém divat ve 2D.

Nejdrive si rozmyslime, jak otocit libovolny vektor ve 2D a poté tento oto-
Ceny vektor porovname s ndsobenim matici R, (). Chceme-li otocit vektor
(¥), staci otocit vektory (§) a (9), vyndsobit tyto rotace koeficienty y, =
a vysledky secist.

Z obrazku 6 je jasné, jak dopadne otoceni zminénych vektort o thel 6.
Nésledujice postup nacrtnuty v predchozim odstavci, ziskdvame jako rotaci
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vektoru (¥) vektor

cos —sind y(cosf — sin 0)
yl . +z = . ,
sin § cos z(sin @ + cos 6)
coz je presné ten oCekavany vysledek (az na soutadnici x, kterd ale pfi rotaci
podle osy z zustéva identicka).

2. Z rovnice y(t) = R;(6)x(t) se k té kyzené dostaneme jednoduchou derivaci.
Derivace levé strany je trividlné y(¢). Pro derivaci pravé strany je dtlezité si
uvédomit, ze R, (#) je konstantni a méni se pouze x(t). Vysledkem je tedy

Ro(0)x(t).

(oss’)

Obrazek 6: Rotace vektori (}),(9) o thel 6.

3. Tiet{ rovnost dokdzeme jednoduse rozndsobenim soucinu R, (6)T R, (6).

1 0 0 1 0 0
0 cosf —sinf 0 cosf sinf
0 sinf cos@ 0 —sinf cos@
1 0 0
=10 cos? 0 + sin? 0 —cosfsinf + cosfsin b
0 —cosfsinf + cosfsinf cos? 6 +sin? 0
1 0 0
=10 1 0
0 0 1
Uloha 3

Zadani:
Mozna jste, secteli ctendri, slyseli o zakonech zachovdni jingych velicin nezZ hybnosti.
Mezi nimi je napriklad zdkon zachovdni tzv. ,momentu hybnosti®. V zdvésu

9Lze si 0 ném preéist napt. opét na Wikipedii: cs.wikipedia.org/wiki/Moment_hybnosti.


cs.wikipedia.org/wiki/Moment_hybnosti
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predchoziho textu snad neni prekvapujici, Ze je i tento zdkon ekvivalentni jisté
symetrii fyzikdlniho systému, v némz plati. Nds by zajimalo védét, kterd symetrie
to je a hlavné (co vam vymluvnost dovoli) proc.

Reseni:

Abychom nemuseli tdpat v nekoneénu moznych symetrii, pomiiZzeme si na zacé-
tek vyzkumu edukovanym tipem. Pokud je moment sily zachovan diky translacni
symetrii a moment hybnosti je rotacni obdobou momentu sily, dava smysl se
domnivat, ze hleddme rotac¢ni obdobu transla¢ni symetrie — symetrii rotacni. Pro-
zfive touto symetrii symetrii (metasymetrii, chcete-li) pfednésime, vymluvnosti
obdareni, duvod k tomuto dusledku.

Snazime se odivodnit, Ze z rotac¢ni symetrie vyplyva zakon zachovani momentu
hybnosti. Jako uz mnohokrat, pomiizeme si obménénou implikaci. Pfenesme se
tedy do vesmiru, ve kterém neplati zachovani momentu hybnosti. Jinymi slovy,
existuje néjaky disk, jenz se jen tak sdm od sebe zaéne tocit okolo nékteré osy.
Pokud se v takové chvili pokusime uplatit rotacni symetrii a cely vesmir oto¢ime
podle jiné osy, nez podle které se toc¢i nas disk, zjistime, ze neplati. Dosli jsme
k jinému vysledku experimentu (disk se najednou z naseho pohledu toc¢i podle jiné
osy nez predtim) jen na zakladé rotace celého vesmiru, ¢imz jsme nas vysledek
dostatecné odivodnili.




20 XXXI/4  RRAA

Téma 2 — Brainfuck
Zavér

Béhem prvnich dvou dilti tohoto ro¢niku jsme se podivali do prapodivného své-
ta ezoterickych programovacich jazyku, konkrétné na Brainfuck. Tento na prvni
pohled primitivni jazyk ndm ukéazal, Ze se v ném da vytvorit témér cokoliv, jak
jsme mohli vidét nap¥. v parametrizovaném feseni hry zivota od Doc.MV Micha-
ela Jarvise. Nakonec bych pro inspiraci rad prilozil feseni vytvareni komplexnich
Brainfuck programi od Be.MM Lukése Komy: https://mam.mff.cuni.cz/media/
prilohy/32-4-t2-Koma.zip.

Vasek; vaclav.tichy.mam@gmail.com
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Téma 3 — Elektrostatika
Regeni 1. dilu
Uloha 1.1

Zadani:

Uvazujme dvé stejné nabité cdstice s nabojem q a se stejnou hmotnosti m. Obé jsou
zavésené na nitich o délce | v laboratori na Zemi. Obé nité visi ze stejného bodu na
strope laboratore a v laboratori je vakuum. V jakém uhlu 6 od svislé primky musi
nité byt, aby se soustava nepohybovala? (Tedy alespori vzhledem k laboratori.)

Staci nalézt algebraickou rovnici, jejimz resenim bude hledany thel, neni treba
dopocitdvat.

Reseni od Maté&je Hoska:

Reseni této tlohy jsem zapocal ndkresem situace.

SN Lol - —F

(a) Nékres situace v laboratofi (b) Rozbor sil pusobicich na jeden z né-
boja

Obrazek 7: Néakres pro tlohu 1.1

Do levého obrazku (7a)) jsem si zakreslil situaci v laboratofi: dva hmotné naboje
velikosti ¢ a hmotnosti m zavésené na nitich délky [, mezi kterymi se vlivem
pusobeni odpudivé sily vytvorila mezera velikosti d a nité se vychylily pod
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thlem 6. Do pravého obrazku (7b) jsem si pak nakreslil rozbor sil ptisobicich na
jeden z naboju. Symetricka situace nastdva i u druhého naboje. Na naboj ptisobi
tihova sila ve svislém sméru a elektricka sila ve vodorovném sméru smérem pryc
od druhého naboje. Jejich vyslednice je pak ve sméru nité, jeji vychylka od
svislého sméru je tedy stejnd jako vychylka nité. Z pravouhlych trojuhelniki
pak muzeme psat:

sin(0) = 2%,
F
tan(f) = F—E
a

Jelikoz rovnice pro elektrickou silu zavisi na vzdélenosti naboju d, rozhodl jsem
se proto si d vyjadrit z prvni rovnice a dosadit do rovnice druhé. Zaroven si
muzeme rozepsat tangens jako podil sinu a kosinu, jelikoz se nam sinus objevuje
i v prvni rovnici.

d = 2lsin(0)
2
sin(6) _ ﬁ I s(iln(e)z

cos(6) m-g

Nyni ekvivalentnimi tipravami ptevedeme sin(6)? na levou stranu rovnice a tipra-
vou zlomku ziskdme vyslednou rovnici.

sin(6)3 q?

cos()  1612mgmeq

Vztah, ktery vysel, neni vibec pékny. Vykreslime-li si graf levé strany rovni-
ce, zjistime, ze se chova podobné jako tangens, jen s pomalejsim ndbéhem do
asymptoty. Pravou stranu si pak mtuzeme zkontrolovat ivahou — zvétsime-li na-
boj q, zvétsi se funkéni hodnota naseho ,tangentu®, a tedy i thel a vzdalenost
mezi naboji. Zvétsime-li ale délku nité [, ihel se naopak zmensi, coz je oceka-
vané chovani. Zvétsime-li preponu a nezménime-li protilehlou odvésnu, tihel se
zmens§i.

Uloha 1.2
Zadani:

Meéjme ctyri stejné ndboje v roviné, kazdy zafixovany ve vrcholu ctverce se stra-
nou a. Spoctéte silu pusobici na kazdy ndboj a elektrickou intenzitu ve stredu
Ctverce. Jakd sila by pisobila na ndboj stejné velikosti, ale opacného znaménka
vioZeny do stredu ctverce? Byla by tato poloha stabilni?
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ResSeni od Maté&je Hoska:

Reseni tlohy jsem opét zapoc¢al nékresy.

(a) Rozbor sil pusobicich na naboj ve vr- (b) Rozbor elektrické intenzity
cholu ¢tverce

Obréazek 8: Nékres pro tlohu 1.2

Zacnéme situaci v levém obrézku (8a). Na ndboj umistény ve vrcholu pusobi
silami zbylé tfi naboje, celkovou silu tedy muzeme urcit jako soucet téchto
prispévki. Pro jednodussi znameni budu déle pouzivat Coulombovu konstantu
k= 1/47T60.

- = N - q2 q2 q2
F:F1+F2+F3:k<2fl+2722+2723)
a a 2a

Jelikoz smér souctu vektort 71 a 72 ma stejny smeér jako 73, mizeme secist sily
F a Fy, jejichz vyslednice pak bude mit stejny smér jako F3. Ve skalarni formé

pak ziskdme vyraz
2 2 2
F=k (q V2 @ ,

a? 2a2

odkud miizeme vytknout ¢2/a?, ¢imz ziskdme vysledek. Vysledna sfla pak ptisobi
ve sméru 73, tedy po thlopricce smérem ven ze Ctverce.

P 1+2V2

F=rL
a? 2

Druhou ¢ast tlohy pak muZzeme vyfesit jen tvahou — elektrickd intenzita ve
stfedu ¢tverce bude nulové, jelikoz se pusobeni vsech ndboji vyrusi. Ctyfi na-
boje ¢tverce si muzeme rozdélit do dvou dvojic naboju lezicich proti sobé po
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uhlopfticce (8b). Ty pak lezi na opa¢nych stranédch stfedu étverce, jejich prispév-
ky k elektrické intenzité tedy musi mit opa¢ny smér. Jejich velikost bude také
stejnd, jelikoz naboje jsou stejné a jsou stejné daleko. Pro rozhodnuti o stabi-
lité této konfigurace tedy staci jen rozhodnout o stabilité ndboju ve vrcholech.
Ty budou stabilni za predpokladu, ze sila, kterou na né bude pusobit ndboj ve
stfedu, bude pfesné opacnd, nez sila, kterou na sebe pusobi navzajem. Podle
definice tedy naboj ve stfedu pusobi silou o velikosti:

2 2 2
O S
2

Smér nové sily je spravny — pridany naboj lezi na tihlopricce ¢tverce, sila bude
tedy pusobit ve spravném sméru. Jeji velikost je ale jind, nez velikost sily naboju
ve vrcholech. Z obou rovnic pro sily muzeme vytknout Coulombovu konstantu
a druhé mocniny ndboje a strany ctverce, ¢imz zjistime, Zze po pridani naboje
do st¥edu étverce ndboje z vrcholii se priblizi do stfedu, jelikoz 2 > (142v/2)/2.
Pritazliva sila tohoto néboje je silnéjsi, nez odpudivé sily zbylych naboji.

Uloha 1.3

Zadani:

UvazZujme kruhovy prstenec s rovnomeérnou délkovou hustotou ndboje A a polo-
merem R. Jaky je pribéh intenzity na ose prstence v zdvislosti na vzddlenosti
od stredu? Moznd vam pripadd problematické, Ze vztah E. = E, + B, plati pro
bodové naboje. Pro spojité rozloZeni naboje budeme postupovat analogicky. Vidy si
urcime nekonecné maly element ndboje a spocteme prispevek elektrické intenzity
od néj pomoci Coulombova zikona. Ndsledné vsechny takové prispevky poscitdme.
Pro vypocet tedy zkuste pouzit vztah:

1 dg .

E=

&
dreg ) r2

kde dg = Ml a integrujte od 0 do 2w R. Nezapomerite, Ze r? je vzddlenost od
elementu prstence, ne od stredu. Tedy r? = R? + 22 kde z je vzddlenost od stredu.
Dejte si pozor na smer 7, protoZe nebude stejny jako jednotkovy vektor ve smeéru
osy. Kam bude vyslednd intenzita mirit?

Reseni od Doc.MM Julie Klementové:

Mame kruhovy prstenec s rovnomérnym rozlozenim néboje, jehoz element je na
kruznici s polomérem R. Bod pozorovani je na ose prstence ve vzdalenosti z od
stfedu. Vzdalenost mezi elementem a bodem je r = v/ R2 + 22. Pozorovaci bod
je na ose, takze pro symetrii se slozky kolmé na osu vsech elementi vzajemné
rusi. Vyslednd intenzita ma tedy smér podélné na osu prstence, takze ve sméru
oSy z.
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Protoze symetrické slozky se rusi, staci pocitat jen slozku intenzity ve sméru
osy z:

e element intenzity: F = ﬁ . %

o slozka podél osy: E, = dE cos a, kde a je tthel mezi 7 a osou z

. 114 . P .
» pomocf pravoihlého trojihelniku: cosa = £ = T

e integrace pres cely prstenec:

— celkovy néboj prstence je @ = X\ - 27 R
— délka elementu prstence je dl = Rdy, kde ¢ € (0,27)

— element naboje je dg = ARdyp

velikost intenzity od elementu je dE = 47350 . g‘f”ifzﬁ, r? je konstatni

pro kazdy element prstence, protoze vSechny body na kruznici jsou
od osy prstence stejné vzdalené.

o slozka ve sméru osy:

1 ARdy z 1 ARdy

dE, =dF = . . = .
cosa 4y R2 4 22 VR? 4+ 22 4dmeg (RQ—‘,—zQ)%

o integrace pres cely prstenec:

FE, = dE, = . = . <27
N 0 dmeg (R2 + 22 ¢ 4meg (R2 + 22)%

2m 1 ARz /2“ d 1 ARz
)2 Jo

e vysledny vztah:

1 2rARz 1 Qz
" dmey (R2+22)5  dmeo (R?+22)3)

kde @Q = 27 je celkovy nédboj prstence.

Vyslednd intenzita sméfuje ve sméru osy prstence (tj. ve sméru osy z). Pokud
je naboj @ > 0 a z > 0, sméfuje od prstence.

Uloha 1.4
Zadani:
Jakou silou bude pisobit dipdl o dipélovém momentu p na naboj velikosti q v téchto
konfiguracich?

1. Dipdl je orientovany v pravém uhlu ke spojnici stredu dipolu a ndboje.

2. Dipol miri primo na ndboj.
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Res

eni od Doc.MM Julie Klementové:

1. Dipdl orientovany kolmo ke spojnici stfedu dipélu a naboje

e tUhel mezi p'a 7 je 90°, tedy p- 7# = pcos90° =0

« intenzita pole: E = pr LBx0xF—p) = _47750 ral
o sila na naboj: F=qE = _477150 %?3
o smeér sily je tedy opacny nez p’a jeho velikost je Tnes z.

2. Dipdl mifi primo na naboj

e thel mezi vektory je 0°, tedy p- 7 = pcos0° = p

e intenzita pole: protoze p a 7 jsou ve stejném sméru, muzeme psat p = pr,
tedy

_ 1 1 1 1 1 2p
= ——— 3 P — - T 3 = 7/\
dmeg r3( PP —P) = 4meg r3( PP = pr) = 4meg B
o sfla: F =qgFE = ME Tdr jeji velikost je 4;5 21;

Uloha 1.5

Zadani:

Pokud mam konfiguraci ctyr stejné velkych ndboju, dvou kladngch a dvou zdpor-
nyjch, jak bude vypadat celkovy dipdlovy moment? Zkuste z toho vyvodit, jak se
scitaji dipolové momenty, pokud pocitame celkovy dipolovy moment konfigurace
vice dipdli.

Reseni od Doc.MM Michaela Jarvise:

Systém si popiseme jako dva dipdly v jednom bodé. Vysledna elektrickd inten-

zita je pak

_ 1 1 1 1

E=——"(3(% - #)F — D" T (3(D - PV —
47_[_507,3( (pl )T. p)+471'€07"3 (p2 7') pQ)

s 1 1 N, oo

E:mfg(?’( 1 7)7 —p1+ 3(P2 - )T — pa)

Em o G777 — i — 1)

= Tneg 3 BT A P2 ) =Py — P

L1 1 )

E= — (3((p1 +p2) - 7)7 — (P + P2))

ey 13

Celkovy dipdlovy moment je jednoduse p. = pj + po.
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Uloha 1.6
Zadani:
Meéjme dipdl v homogennim elektrickém poli. Bude na néj pusobit néjoka sila?
Spoctete moment sily, ktery by pusobil na dipol v homogennim elektrickém poli.
Spoctete ho pro co nejobecnéjsi situaci, tedy kdyz dipol neni orientovany soubéezné
s polem ani kolmo na pole. (Homogenni vektorové pole je takové pole, které md
v$ude konstanini velikost a vsude miri stejné.)

Reseni od Doc.MM Michaela Jarvise:

Na dipdl nebude pusobit zadné sila, protoze sila na kladny naboj a sila na
zéporny naboj dipdélu se vyrusi. AvSsak bude na néj pusobit to¢ivy moment.
Na kladny naboj bude ptisobit moment 7 = qE x g. Na zaporny naboj bude
pusobit moment 7_ = —qﬁ X _Td.

Celkovy moment vychazi:

T++T,:quJ:Exﬁ

Uloha 1.7
Zadani:
Méjme dipol pripevneny k pojizdnému voziku na kolejnicich a méjme kruhovou trat
vytvorenou z koleji. Dipol je pripevneny tak, Ze vidy miri ve smeru tecném k trati.
Uprostred traté méjme bodovy naboj. Jakd sila bude pisobit na dipdl? (Zkuste
odpovédét alespori kvalitativné.) JaktoZe se nejednd o perpetuum mobile?

ReSeni od Vojtécha Kubrychta, Aleny Mouchové a Michala Stroffa:

To je velice zajimavy mechanismus. Na zakladé vysledku z tlohy 1.4 vime, ze
sila plisobi ve stejném sméru, jako ukazuje dipdl (opacéné, nez jsme spocetli,
diky akci a reakei), konkrétné

coz nutné znamend, ze sila vzdy pusobi ve sméru jizdy a to by mélo vozik
bezlimitné urychlovat. Neni tomu tak, uz jen logiky véci, zZe pole naboje upro-
stfed je konzervativni (plati, Ze jeho rotace je nulovd), pokud se nehybe, coz
predpokladam. Kdyz je pole konzervativni, nelze z néj vydolovat ptfi navratu
do stejného bodu néjakou energii navic. Co se tam tedy ale déje? Jednoduse,
aby mohl jezdit po kruznici a udrzovat se v pozadovaném smeéru, je potieba
neustale vykondvat praci na nataceni dipdélu, protoze tim, jak je dipdl oriento-
van, by pro néj bylo energeticky vyhodnéjsi otevirat se smérem od stfedu, ne se
neustale stacet ke stredu jak vyzaduje trajektorie, tato energetickd podminka

vvvvv
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z podvoleni se translacni sile mohl kompenzovat. Proto se vozik ani nerozje-
de a kdyZz ho postréime, casem zbrzdi (vlivem tfeni a néjakého generovaného
zéfeni, hddam).

Uloha 1.8
Zadani:
Odvodte vztah
E

—(3(p- )P — ). (1)

Hint: Polozte si zaporny ndboj do pocdtku soustavy souradnic a kladny ndboj
na osu z. Poté si napiste vztah pro elektrickou intenzitu takovéto konfigurace podle
E.=E + Eg. V jednom clenu bude vystupovat velikost separacniho vektoru od
kladného ndboje (od zdporného je to prosté vzddlenost od pocdtku), tedy vektoru
spojujictho zkoumang bod s kladngm ndbojem. Jeho velikost spoctéte pomoci kosi-
nové vety. Ddle budete chtit jit se vzddlenosti mezi ndboji k nule. Upravte vztah,
ktery jste dostali z kosinové véty, a pouZijte aproximaci:

(1+2)* =1+ az,

pro velmi malé x. Dosadte pak vse do vijrazu pro elektrickou intenzitu a zkuste
spocist limitu, kdy vzddlenost mezi ndboji jde k nule. Pamatujte, Ze soucin ndboje
a této velikosti je velikost dipélového momentu a ta se s limitou ménit nebude. Po
tomto vgpoctu si jen uvédomte, demu je ve vztahu (1)) roven élen (p'- 7).

Reseni od Vojtécha Kubrychta, Aleny Mouchové a Michala Stroffa:

Pouzit navrzeny hint je samozifejmé rozumna moznost, ovSem ji moc nemusim
popis pomoci intenzit a uz vibec ne néjaké jejich pracné sc¢itani, proto se poku-
sim vztah odvodit pomoci potencidla. Protoze plati E = —Vp, nepouzivame-
-li v elektrostatice popis elektrického pole pomoci nestacionarniho vektorového
potencialu, a zaroven nabla je linedrni operator, plati princip superpozice i pro
skalarni potencial ¢. Potencidl bodového naboje je jednoduse

kQ
T.

Umistime-li si do poc¢atku soustavy souradnic kladny naboj +¢q a na osu z do
vzdélenosti d zadporny naboj —q, dostavame celkovy potencial ve tvaru

_ kq _ kq
\/x2 +y2 + 22 \/x2+y2+(zfd)2

~k Va2 +y?+22 —2dz + d® — /22 + y? + 22
~ kg 22+ y2 + 22 :

~

o(7)
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V22 + y? + 22 oznaéime jako r a skrtneme fad O(d?).

. ry/1—2dz/r?2 —r 1—dz/r?—1 dz
@(r)%kq( / )qu:k

q—
r2 r3

No a gdz odpovida v nasi volbé souradnic skalarnimu soucinu p'- 7.

Protoze aproximace pouzité vyse platily pro mald d a d je nekonecné malé ve
vysledku, je vysledny potencial dip6lu exaktnim fesenim problému. Tento vztah
by mél byt invariantni vici rotaci soustavy soufadnic, proto volba obou naboju
na ose z nezpusobila zddnou jmu na obecnosti.

Déle spocteme gradient tohoto potencidlu.

p-rVr

= V(p-T

oIS P Ak S -
T

Pomérné trividlné, kdyz si rozderivujeme skalarni soucin p'- 7, dojdeme rychle

k tomu, ze V(p' - ¥) = p. Zdroven je Vr uz jen intuitivné podle definice gra-

dientu kolmy na kiivky konstantniho r, tedy by mél néjak ukazovat (i s ohle-

dem na rozmér vysledku) jednotkovy vektor 7. Po parcidlnim rozderivovani

r = /2% 4+ y2 + 22 se o tom lehce presvédéime. Vysledkem je tedy

E:k(w—ﬁ).

v 3

Za pouziti normy 7 = 7/r mame intenzitu el. pole kolem dipélu ve tvaru, ktery

je uveden v textu.

- 1
E=——(@3@{p 7)f —
s (1) = )

Radim N.; radim05@post.cz
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Téma 4 — Vypocetni geometrie

Reseni tloh
Ahoj, mozna si nékdo jesté pamatuje na prvni ¢islo a mozna jesté cekdte na
pokracovani tématka o vypocetni geometrii. To zde sice nedostanete, ale alespon
se podivam na Teseni zadanych tloh.

Uloha 1.3
Zadani:
Pokud je pocet priseciki k € O(n?), je sweeping algoritmus lepsi neZ naivni
algoritmus, ve kterém prochdzime vSechny mozné priseciky?
Reseni:
Ne. Naivn{ piistup zkusit kazdou dvojici tsedek by trval (3) € O(n?) ¢asu. Za-
timco zametaci algoritmus by vysel na O(n?logn).

Uloha 1.4
Zadani:
Nds odhad délky seznamu bodi akce S je trochu hruby (O(n+k)). Lehkou dpravou
analyzy algoritmu lze zkrdtit jeho délku na nejvgse O(n). Ukazte ji.
Reseni:
MizZeme si rozmyslet nasledujici: Vsechny body akce v seznamu koresponduji
s néjakym priiseCikem na zametaci primce a kazdy prusecik pridava do seznamu
nejvyse dva body. Tedy délka seznamu bude nejvyse 2n, kde n je pocet tsecek.

Uloha 1.5
Zadani:
Zlepsi predchozi tprava sloZitost algoritmu?
Reseni:
Predchozi uprava nijak nezméni asymptotickou ¢asovou slozitost, protoze jak
logn, tak i logn? jsou ve stejné asymptotické t¥idé, nebot:

logn? = 2logn

Obecné dobrym napadem, jak Tesit tlohy, bylo prvné zkusit pouzit zametaci
algoritmus. Zkusme si tedy na tloze 1.7 ukazat, jak presné by to bylo mozné
udélat.

Uloha 1.7
Zadani:
Mdame n trojuhelniki tak, Ze Zidné dva se neprotinaji. Naleznéte algoritmus, ktery
v case O(nlogn) o kaZdém trojuhelniku rozhodne, zda je obsaZen v jiném. Nd-
sledné algoritmus upravte tak, Ze ve stejném case pro kazdy trojuhelnik nalezne
trojuhelnik, ve kterém je obsaZen.



Téma 4 — Vypocetni geometrie 31

Reseni:

Prvné si tlohu zjednodusme a zamysleme se, jak tuto tlohu vyftesit pro dva troj-
thelniky A a B. BUNO feknéme, ze trojihelnik A je obsazen v trojihelniku B.
Pak existuje vodorovnd ptrimka ¢, kterd protind oba trojihelniky.

Oznacme si prusec¢iky primky g s trojihelniky A a B jako A;, A3 a By, Ba s tim,
ze A1 je vice napravo nez As a obdobné Bj nez By. Zde je dobré si rozmyslet, ze
A; a As mohou byt jeden a ten samy bod, ndm to ale nijak vadit nebude.

Pak plati, Zze body na primce ¢ jsou usporadané takto: By, A1, As, Ba. Jak
ale takovou piimku ¢ najit? Celkem jednoduse — sta¢i nam vzit libovolny bod
v A. Naopak, pokud nalezneme libovolny bod v A, pro ktery predchozi vlastnost
neplati, tak A neni obsazen v B.

Nyni mtizeme tento postup zkusit zobecnit pro libovolné velkou mnozinu troj-
thelnik. Vezmeme si zametaci algoritmus (sweep-line) a vlozime do néj vSechny
hrany trojihelnikt. Udéldme jenom drobnou tpravu: v kazdém vrcholu na zame-
taci pfimce si budeme drzet, zda je obsazena v néjakém trojihelniku.

Ve chvili, kdy poprvé zametaci ptimka protne néjaky trojihelnik A, podivime
se na dané primce o jednu doprava a jedna doleva. Pokud oba pruseciky patii
néjakému trojihelniku B, pak A je obsazen v B. Pokud néjaky z téchto pruseciki
je obsaZen v trojihelniku C, pak A je také obsazen v C' (jinak by to nemohl byt
nejblizsi pruseéik na pfimce, protoze néjaky z bodu C' by musel byt blize).

Pokud ale ani jeden z téchto prusec¢ikt nepatii zadnému trojihelniku, pak A
neni obsazen v zadném trojuhelniku. I zde se pouzije obdobny argument: kdyby
byl v néjakém trojihelniku D obsazeny a nejblizsi v zddném ne, musely by byt
pruseciky D blize nez nejblizsi pruseciky na primce ¢, a to je spor.

Zametaci algoritmus ndm umoznuje udrzovat pruseciky trojuhelnikia se zame-
taci pfimkou v ¢ase O(nlogn), kde n je pocet trojihelniki. Tedy dany problém
umime Tesit v tomto case.

Uloha 1.6
Zadani:
Lenka se rozhodla, Ze se dd na chov ovci. Poridila si tedy ohradu R ve tvaru
mnohothelnika. Ouvce ji ale z ohradky utikaly, a tak kazZdé dala riZovou stuzku
s GPS lokdtorem (ten vraci informaci, v jakém bodé se zrovna ovecka nachdzi).
Cas od casu chce Lenka zkontrolovat, zda jsou viechny jeji ovecky v ohradé. Po-

mozte Lence pro kaZdou ovecku rozhodnout, zda je v ohradée. Navrhnéte algoritmus
a odhadnéte jeho sloZitost v zdvislosti na poctu ovecek a poctu vrcholi ohrady.

Reseni:
Zde se déa pouzit velmi obdobny ptistup jako v 1.7. Misto trojihelnikt ale pouzi-
jeme body.
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Uloha 1.14

Zadani:

Orgové se rozhodli, Ze si spolu zahraji na schovdvanou. Pan Kosticka ale byl néjak
podezrele dobry. Vojtovi to nedalo a rozhodl se ovérit, zda mohl pan Kosticka své
spoluorgy vidét. K dispozici md pldnek m prekdzek (dsecek) a n hrdcd a pozici
pana Kosticky. O kaZdém hrdci miZete uvazovat jako o bodu. Pomozte Vojtovi
nalézt algoritmus, ktery mu rekne, zda dany hrdc byl zrovna vidét z pozice pana
Kosticky, nebo ne.

Reseni:

Opét je mozné pouzit zametaci algoritmus. Je ale nutné si rozmyslet, jak mé
takova ptimka vypadat.

Dldza; gadurekvojtech@outlook.com
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Téma 5 — Kombinatorika
Dil 4: Nepocitani a principy
Uvod
V minulém ¢isle jsme si ukazali, jak pocitat nékteré zdkladni véci v kombinatorice
nebo co je to kombinacni ¢islo. V tomto dile na to navazeme a ukazeme si nékteré
zajimavé vlastnosti kombinacnich ¢isel, poté si pomoci nich dokdzeme binomickou
vétu a nakonec si popiseme dva dilezité kombinatorické principy — Princip inkluze

a exkluze a Dirichletv princip. Stejné jako v minulém dile vas ¢asti vyznacené
kurzivou vyzyvaji k zamysleni.
Kombinatorické nepocitani

Pokud si kombinac¢ni ¢isla spravné zapiseme, tak tvori zajimavy dtvar nazyvany
Pascaltiv trojihelnik zachyceny na obrézku 1. Jeho konstrukce je jednoduchéa. Jen
pozor, pii tvorbé Pascalova trojihelniku indexujeme od nuly. Kazdy jeho prvek
je kombina¢nim &islem (7)), kde n znaéf &slo fédku (n je tedy stejné pro prvky
ve stejném Fadku) a k znadi pozici v fadku (tedy k € {0,1,...,n}). Pascaliv
trojuhelnik je nekoneény, hodnotu n mizeme zvysSovat do nekonecna.

Konstrukce pomoci rozepisovani a pocitani binomickych ¢isel je vSak lehce
zdlouhavd, existuje i jednodussi zptsob. VSimnéme si, ze obé boc¢ni strany troj-
thelniku jsou tvoreny samymi jednickami. Kazdé ¢islo, které méa nad sebou dva
sousedy, je jejich soudtem. Plati tedy (Zii) =)+ (kil) Zkuste se zamyslet,
pro¢ by mély tyto vlastnosti platit.

1 (0)
1 1 () ()
1 21 6 @ G
1 3 3 1 ) ) Q) 6
1 46 41 6OCGO G

Obrazek 9: Pascaliav trojihelnik



34 XXXII/4 R

Prvni vlastnost plyne trividlné z toho, jak jsou kombinacni ¢isla definovana,
protoze pokud ze skupiny o n prvcich vybirdme 0 nebo n prvki, tak mame pouze
jednu moznost, jak to udélat.

Druhd vlastnost se samoziejmé dé dokédzat z definice, ale existuje i elegant-
néjsi zpusob, jak ji dokazat. Podivejme se na kombinacni ¢islo (Zﬁ) To nam
k4, kolika zplisoby muZeme ze skupinky n + 1 prvku (pro ndzornost lidi) vybrat
k + 1 prvki (lidf). Reknéme, Ze je ve skupiné n + 1 lidi piitomna Anicka. Pokud
chceme vybrat skupinku k + 1 lidi tak bud v té skupince Anicka je, nebo neni.
Pokud Anicka ve skupince je, tak k ni ze skupiny n lidi (skupina bez Anicky)
musime vybrat k dalsich osob (aby jich dohromady bylo k + 1, jak chceme), coz
muzeme udélat (Z) zpusoby. Déle k tomu pricteme pocet variant, kdy Anicka ve
skupince nebude. Potom z n (opét skupina bez Anicky) musime vybrat &k + 1
lidi, coz je (kj_l). Celkovy pocet moznosti, jak miuzeme vybrat k + 1 z n + 1 lidi,
je souétem poctu pripadi, kdy jeden uréity clen (Anicka) ve skupiné je a kdy
tam neni: (Zﬁ) = (Z) + (kil) Podobny trik ndm umoznuje napiiklad fesit tento
problém: Kuba md robota a 5 vylepseni, pricemz kazZdé mize, nebo nemusi pou-
zZit. Kolik rizngch robotd miZe postavit? (Roboti jsou riznd, pokud se lisi alespon
v 1 modifikaci.)

Reseni této tilohy je pouze seéist viechna kombinaéni éisla, kterd maji ,,nahofe®
¢islo 5. Pokud se na to podivame v Pascalové trojuhelniku, tak se jedna o soucet
6. fadku. Nemohli bychom si usetfit praci s pocitanim a vyjadrit tento soucet
obecné? Cemu je roven soucet vsech (Z), kde za k postupné dosazujeme cisla od

0 do n (tedy jakd je hodnota > ;._, () v zdvislosti na n?)

Snazime se spocitat, kolik existuje riznych podmnozin mnoziny o n (v ilu-
stra¢nim pripadé 5) prvcich, protoZe vybirdme mnoziny vsSech velikosti, kazdou
pravé jednou. Na rozdil od predchoziho prikladu se podivame na vSechny prvky
(ne pouze na jeden) a pro kazdy rozhodneme, jestli v podmnoziné je, nebo neni.
Jinymi slovy si modifikace sefadime a pro kazdou modifikaci robota rozhodneme,
jestli ji pouzijeme, nebo ne. To se d4 prevést na to, kolik existuje fetézcu o n
znacich slozenych pouze z nul a jednicek, pficemz nula odpovidad tomu, Ze jsme
dany prvek nevybrali, a jednicka tomu, ze ano. Tento problém uz jsme ale Tesili
v minulém dile a vime, Ze jeho Feseni je 2" a protoze Kuba ma 5 modifikaci, tak
pocet robott, které miize postavit je 25 = 32.

Binomicka véta
Spoustu z vas se jiz ve skole jisté setkalo se vzorcem (a + b)? = a? + 2ab + b>. My
si ukdzeme, jak tento vzorecek pomoci kombinacnich ¢isel zobecnit pro libovolné
nna (a+b)" =37, (7)a"~"b". Z toho podle definice sumy dostaneme napiiklad
(a+b)® = a® + 3a®b + 3ab® + b3 . Zkuste si rozmyslet, pro¢ by tento vztah mél
platit. Klidné zacnéte s n = 3 a pak si tento vzorecek zkuste zobecnit.

Nejprve si (a+b)™ rozepiSeme na (a+b)(a+b) ... (a+b), kde se (a+b) vyskytuje
n-krat. Poté vidime, ze prvek a™?b’ vznikne pravé tehdy, kdyz v i zavorkéach
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nasobime prvek b a ve zbylych prvek a, tedy pokud chceme jejich celkovy pocet,
tak vybirame ¢ zavorek, ve kterych néasobime b, z celkovych n zavorek. Pokud
toto udélame pro vSechna ¢ od 0 do n, dostaneme nas pozadovany vzorecek. Jiné
prvky roznésobenim nevzniknou, protoze a a b dohromady musime vybrat vzdy
n-krat. To plati diky tomu, ze z kazdé zavorky musi byt v kazdém roznasobeném
prvku bud jedno a, nebo jedno b. Zajimavé je, ze pokud dosadime a = b =1, tak
dostaneme alternativni dikaz toho, ze 2" = >, _, (Z), neboli jak jsme si rekli
diive jak vypocitat soucet fadku n + 1 v Pascalové trojihelniku.

Princip inkluze a exkluze

Princip inkluze a exkluze (ddle PIE) je jeden z nejcastéji pouzivanych princi-
pu v kombinatorice. Umoziiuje ndm pocitat se sjednocenimi mnozin, s nimiz se
v kombinatorice pocitd pomérné slozité, pomoci jejich prunikd, se kterymi se po-
¢ita mnohem snadnéji. Nejprve se podivame na ilustracni pripad: ve mésté funguji
2 sportovni kluby. Fotbalovy klub m4a 12 ¢lenti, tenisovy klub 9. Pritom 3 fotba-
listé hraji i tenis. Mésto poté zalozilo jesté volejbalovy klub. Ptihlasilo se do néj
15 lidi, z toho 4 fotbalisté, 3 tenisté. Zaroven vime, ze pravé 1 ¢lovék chodi do
vsech t¥{ klubt. Kolik osob celkem je clenem néjakého klubu?

Nejprve secteme pocty ¢lent sportovnich klubu (tedy 12 + 9 + 15). To ale
jisté neni odpovéd, protoze nékteré lidi jsme ocividné zapocitali vickrat. Kon-
krétné kazdého clovéka, ktery je pravé ve dvou klubech zaroven jsme zapocitali
dvakrat, kazdého, ktery je ve trech trikrat atd. Tak zkusime odecist pocet lidi,
ktef{ jsou ve dvou klubech zaroven (tedy 34+443). Nyni ndm sedi pocty lidi, kte-
1 jsou pravé v jednom klubu a téch, ktefi jsou pravé ve dvou. Tedy uz musime
opravit pouze pocet lidi, ktefi jsou ¢leny vSech t¥i. Ty jsme zapocitali t¥ikrat
v prvnim souctu a poté jsme je odecetli také t¥ikrdat (protoze jsou soucdsti tif
dvojic klubi1) a tedy uz ndm staéi pouze jejich pocet pri¢ist a dostaneme vysledek
12+9+15—-3—-4—-3+1 = 27. U tohoto postupu jsme rovnou prisli na to,
jak spocitat velikost sjednoceni tii mnozin — tedy kolik prvku se vyskytuje ale-
spo1n v jedné mnoziné (neboli v nasem pripadé kolik lidi chodi do alespon jednoho
ze ti{ klubti). Toho jsme dosdhli jenom pomoci pruniki (neboli pomoci toho, Ze
jsme védéli, kolik lidi chodi zdroven do libovolnych z klubi) tak, Ze jsme nejprve
pricetli pruniky velikosti 1 (neboli kolik lidi chodi do kazdého klubu), poté ode-
Cetli praniky velikosti 2 (tedy pro kazdou dvojici klubti jsme odecetli, kolik lidi
chodi do obou z nich) a nakonec jsme pricetli praniky velikosti 3 (neboli pocet
lidi, ktef{ chodi do vSech ti{ klubi zdroveni). Princip inkluze a exkluze ndm k4,
ze timto pri¢itanim lichych prinik a odec¢itanim sudych prunikt jsme schopni
spocitat sjednoceni libovolného poc¢tu mnozin, ne jen 3. MuzZete si rozmyslet, Ze
toto turzeni obdobné plati i pro 1 a 2 mnoZiny.

Na Obrazku 2 nize je situace z prikladu zachycena. Kazdé pismeno v nazvu
odpovida jednomu klubu a mi zndme velikosti ¢asti, které jsou obarvené alespon
1, 2 a 3 barvami. Tedy pro kazdou kombinaci znakii zndme velikost c¢asti, které
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obsahuji v ndzvu alesponi tyto znaky (napfiklad pro kombinaci A a B zndme
velikost AB + ABC') a nés zajimé velikost obarvené ¢ésti obrazku.

Obrazek 10: Princip inkluze a exkluze pro tfi mnoziny

Pro dukaz PIE si dokdzeme néasledujici pomocné tvrzeni, které budeme po-
tFebovat: ZZ:O(—l)k(Z) = 0, neboli pocet sudych a lichych podmnoZin (tzn.
podmnozin se sudym a lichym poétem prvki) néjaké mnoziny o n prvcich je stej-
ny (nesmime zapomenout na podmnozinu velikosti 0, kterd je sudd). Zkuste si
toto turzeni dokdzat sami.

Vezmeme si vSechny liché podmnoziny néjaké mnoziny o n prvcich a néjaky
konkrétni prvek a této mnoziny. Nyni pro kazdou podmnozinu vezmeme prvek a
a pokud v této podmnoziné je, tak ho z ni odebereme, a pokud v ni neni, tak
ho do ni pfidame. Tim pro kazdou lichou podmnozinu dostaneme unikatni sudou
podmnozinu. To plati diky tomu, ze pokud se dvé liché podmnoziny lisi né¢im
jinym, nez tim, Ze obsahuji/neobsahuji a, tak se z nich nemuze stat ta stejnd sudd
podmnozina a pokud se lisi pouze obsahem a, tak jedna z nich neni lichd, protoze
dvé cisla lisici se o 1 nemuzou byt obé lichd. Sudych podmnozin tedy musi byt
alespon tolik, jako lichych. Stejnou tivahu mizeme provést i pro sudé podmnoziny,
z Cehoz ziskdme, ze pocet sudych a lichych podmnozin je stejny.

A tim se konecné dostavame k PIE. Ten zni ndsledovné: Méame néjaky pocet
mnozin m, které se mohou protinat (neboli nékteré prvky mizou byt ve vice
munozindch). Pro néj vezmeme pocet prvka ve vSech prunicich lichych podmnozin
a odecteme pocet prvka v prunicich sudych podmnozin a oznacime si tuto sumu
S. Pak S je pocet prvku ve sjednoceni téchto mnozin. Zkuste si rozmyslet dukaz
PIE (ndpovéda: podivejte se na jeden konkrétni prvek).

Jak jsme vam napovédéli, podivame se na jeden konkrétni prvek p. Reknéme,
ze je soucasti n z m mnozin. Zajiméa nés, kolikrat se p vyskytuje v priniku £ > 1
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mnozin. Aby byl p v pruniku & mnozin, tak se musi vyskytovat v kazdé z nich
a tedy kazda z nich je jedna z m mnozin, kterych je p soucasti. Z toho pocet
jeho vyskytu v prunicich velikosti & dostaneme jednoduse jako (2) 7 toho si
mizeme vyjadiit S jako >, _; (—1)*7!(}). Abychom dokézali PIE, tak toto musi
byt rovno 1, protoze kazdy prvek je v priuniku mnozin zapocitan pravé jednou.
Pokud si vezmeme nase pomocné tvrzeni a vSe v sumeé, kromé i = 0, presuneme
na druhou stranu rovnice, tak dostaneme:

Protoze bylo p zvoleno libovolné, tak to plati pro vsechny prvky téchto mnozin,
¢imz jsme dokazali PIE.
Dirichletlv princip

Jako takovou tresnicku na dortu si ukazeme jesté relativné jednoduchy, ale velice
uziteény princip — Dirichlet@iv princip neboli princip holubniku. Ten nam fika,
kolik musime mit holubti, aby se v alespon jednom z m holubnikt nachéazelo ale-
spon n holubu. Nejprve se podivame na to kolik holubt je potieba, aby v alespon
jednom z 8 holubniki bylo alespon 7 holubti a pak si tento priklad vyresime obec-
né. Zkuste si rozmyslet, kolik nejméné holubtu potrebujeme. Zacnéte s konkrétnimi
¢isly a pak odvodte obecnou zdvislost.

Vidime, ze pokud méme 8-6 holubi, tak to tésné nevyjde, protoze do kazdého
holubniku ddme 6 holubu, ale zaroven pokud jednoho pridame, tak uz ho nemame
kam dat tak, aby jsme nesplnili podminku. Tedy celkové nam stac¢i 8 -6 + 1 = 49
holubti. Obecné odpovéd pro m holubnik a n holubt je m(n — 1) 4+ 1. Vidime,
Ze m(n — 1) jisté nestaci, protoze v kazdém holubniku muze byt n — 1 holubi
a nase podminka neni splnénd. Ted jesté dokdzat, ze m(n — 1) + 1 staci. Pro
spor predpokladéame, ze v zddném holubniku neni alespon n holubti. Potom vsak
v kazdém holubniku je maximalné n—1 holubi, a tedy celkovy pocet je maximalné
m(n—1), coz je spor. Tedy m(n—1)+1 holubt staéi, aby byla podminka splnéna.
Uloha 4.1 [2b]: Mdme tabulku 5 x 5 a dva lidé hraji hru. Pravidelné se stridaji M
v tazich. Hrdc¢ na tahu vZdy obarvi jedno policko tabulky svoji barvou. Pokud hrdc
svoji barvou zvlddne obarvit 4 vrcholy néejakého obdélniku, tak vyhrdl a hra konci.
Dokazte, Ze hra nemize skoncit remizou, cili jeden hrac jisté vyhraje.
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Uloha 4.2 [2b]: Mé&jme 2 cervené kulicky, 8 modré a 3 zelené. Kulicky stejné
barvy jsou navzajem nerozlisitelné. Spocitejte, kolika zpiusoby je lze seradit tak, aby
vedle sebe nikdy nebyly vsechny kulicky od jedné barvy (tudiz mezi pruni a posledni
kulickou jedné barvy v tadé musi byt alesport jedna kulicka jiné barvy).

Uloha 4.3 [3b]: Z éisel 1,2,...,1000 vyskrtdme vsechny ndsobky 3, 5, 7 a 42.
Kolik c¢isel ndm zistane?

Uloha 4.4 [3b]: Urcete pocet cest délky a + b z levého dolniho rohu do pravého
horniho v m7iZce a X b.

Uloha 4.5 [3b]: Rozkladem cisla n délky k > 1 rozumime konecnou nerostouci
posloupnost prirozengch cisel ay,...,ar splnujici a; + --- + ar = n. Dokazte, Ze
pocet vsech rozkladu cisla n je roven poctu rozkladi c¢isla 2n délky n.

Lukas, Terka; troj.lukas@gmail.com
odevzddvejte do odevzddvdtka

Redeni 3. dilu
Uloha 3.1

Zadani:
Kolik existuje péticiferngch hesel, kterd obsahuji prdvé 3 jednicky? (Hesla obsahuji
pouze cifry a mizou zacinat na 0.)
Reseni:
Nejprve vybereme 3 cifry, které budou jednicky a poté u ostatnich ¢isel vybereme
jedno ze zbylych 9 cifer a tim dostaneme vysledek (g) .92,

Uloha 3.2
Zadani:
Kolik let v minulém tisicileti mélo rostouci posloupnost cifer? (Tedy kolik let tvaru
Tzyz splivje 1 < x <y < z.)
Reseni:
Sta¢i ndm pouze vybrat 3 z ¢isel od 2 do 9 a jejich poradi je jednoznacéné urcené,
takze vysledek je (g)

Uloha 3.3
Zadani:
Mdame 10 specidlnich znaku, 10 cislic a 26 pismen. Kolik riznijch hesel délky
8 muzeme vytvorit tak, aby obsahovala pravé 1 specidlni znak a prdavé 2 cislice?
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Reseni:

Nejprve vybereme misto, kam umistime specialni znak, vynasobime poc¢tem moz-
nych specidlnich znakt na tomto misté, poté ze zbylych mist vybereme, kam
umistime dvé ¢islice, pak opét vynasobime poc¢tem moznych ¢islic pro obé tato
mista a nakonec vynasobime pro kazdé zbylé misto po¢tem moznych pismen. Tedy
dostaneme () -10- (7) - 102265 = (3) - () - 10° - 26°.

1
Uloha 3.4

Zadani:

Mdame 5 modrych, 10 zelengch a 10 oranzovijch mickiu a vybereme si 10 z nich.

Kolik mdme moznosti, jak bude vijslednd skupina vypadat?

Reseni:

Spocitame, jako kdybychom méli vSech barev neomezené, a poté odecteme pocet

vSech pripadi, kdy jsme vybrali vic nez 5 modrych (tedy predpokladame, Ze

6 modrych jiz madme vybranych a poté vybirdme ze 3 barev pro zbylé 4 micky).

V obou pripadech se jedna o kombinace s opakovanim a ty z minulého dilu vime,

7e spocitame takto: (122) — (g)
Uloha 3.5

Zadani:

Kolika zpusoby jde rozdélit 20 rizngch knih do 5 regali? (V kaZdém regdlu ndm

zdlezi na poradi knih.)

Reseni:

Nejprve si knihy rozdélime do regali pomoci metody prepazek, kterou jsme po-

uzivali na pocitani kombinaci s opakovanim, ¢imz knihy rozdélime do regala tak,

ze kazda prepazka symbolizuje prechod do nizsiho regalu. Poté kdyz knihy ¢teme

,jako pismena v knize“ tedy zprava zvrchu, tak rozdéleni do prepazek neméni je-

jich poradi. Poté uz je jenom musime v tomto poradi usporadat a tim dostaneme
vysledek. Tedy vysledek je 20! - (%1).
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Téma 6 — LISP
Dil 2: Lambdy a makra

Posledné jsme se seznamili s zadkladnimi konstrukty jazyka Lisp. V tomto dile si
vysvétlime, jak funguje volani funkci, a napiSeme si vlastni makro. Nejprve ale
musime napravit kfivdu z minula.

Pro uplnost nejprve uvedeme chybny priklad a pak ho opravime.

(defun square-only-small (n)
(if (< n 100) (* n n) (
(print "wow, you are already pretty big!")
n
)
)

Problém je v s-expression ((print "wow, you are already pretty big!") n). Kdy-
bychom chtéli vypsat text a vratit hodnotu, potfebujeme pouzit progn.

(defun square-only-small (n)
(if (< n 100) (* n n) (progn
(print "wow, you are already pretty big!")
n
))
)

Specialni funkce progn vyhodnoti vSechny své argumenty a vrati hodnotu posled-
niho.

Case sensitivity Jisté jste si vsimli, Ze af uz napisete (print 'a) ¢i (print 'A),
Lisp vypiSe v obou pripadech A. To je proto, ze Lisp automaticky prevadi vsech-
ny jména atomu na uppercase. Presto je technicky vzato case sensitive, a dokaze
rozeznat velkd a mald pismena. V praxi se vSak chovd jako case insensitive ja-
zyk. Budeme se drzet konvence, ze dilezité konstanty, jako jsou T a NIL budeme
psat velkymi pismeny. Navic budeme proménné a funkce, které definujeme my,
pojmenovavat ¢eskymi nazvy.

Funkce jako parametr
Kdybychom psali néco jako kalkulacku, mohli bychom napsat nasledujici funkci:

(defun vyhodnot-operator (operator leva prava)

(cond
((string= operator "+") (+ leva prava))
((string= operator "-") (- leva prava))

((string= operator "*") (* leva prava))
((string= operator "/") (/ leva prava))
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Funkce cond (zkratka z conditional) je zobecnénim if. Umoziiuje zapsat vice
podminek za sebou prehlednéji nez vnorené if. Bere libovolny pocet seznamu
(vétvi). V kazdé vétvi se vyhodnoti prvni prvek jako podminka. Pokud je pravdiva
(neni NIL), vyhodnoti se zbytek vyrazti v dané vétvi a vrati se hodnota toho
posledniho. Pokud podminka neplati, jde se na dalsi vétev. Pokud neplati zddna
z podminek, vrati se hodnota NIL.

Vsimnéte si také, Zze pro porovnani operdtoru pouzivime string= a ne =.
V Lispu (konkrétné v Common Lispu) operdtor = slouzi vyhradné k porovna-
vani ¢isel. Pro porovnavani fetézci musime pouzit string=. Kdybychom pouzili
=, dostali bychom chybu, Ze operand neni ¢islo.

Snadno si vSimnete, ze na kazdém radku se v podstaté vsechen kod opakuje —

v

jedina véc, ktera se méni, je operator. Zkusime napsat ,,chytiejsi“ verzi:

(defun operator-to-funkce (operator)
(let ((retezec (list "+" "=" "x" /"))
(funkce (list #'+ #'- #'x #'/)))
(loop for i from O to 3 do
(if (string= (nth i retezec) operator)
(return-from operator-to-funkce (nth i funkce))

)

)
(defun vyhodnot-operator (operator leva prava)
((operator-to-funkce operator) leva prava)

)

Funkce operator-to-funkce nam prevede Tetézec "+" na funkci +, obdobné i pro
ostatni operatory. Z minula zname quote, neboli apostrof ', ktery vytvori objekt
typu symbol. Zde jsme pouzili operator function, tedy #', ktery vytvori objekt
typu function, o ¢emz se muzete presvédcit pomoci type-of.

Bohuzel ani to, ze operator-to-funkce vraci objekt typu function, nepomuze.
Kdyz se Lisp pokusi vyhodnotit vyraz v téle vyhodnot-operator, pokusi se vylozit
si s-expression (operator-to-funkce operator) jako funkci. Kdyby ji vyhodnotil,
dostal by funkci; to vSak neudéld, a misto toho nam hodi error. Abychom funkci
zavolali, musime pouzit funkci funcall.

(defun vyhodnot-operator (operator leva prava)
(funcall (operator-to-funkce operator) leva prava)

)

Nejprve se vyhodnoti vsechny parametry funcall, operator-to-funkce nam vrati
funkci a ta se zavola s parametry leva a prava.

Poznamka: Funkci funcall mizeme v prvnim parametru zadat i symbol, ktery
pojmenovava funkci. Operdtor #' pouzivame zejména proto, ze to tak je tradicni,
o néco rychlejsi a upozornuje na to, ze se jedna o funkci. Upravena verze funkce
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operator-to-funkce by obsahovala ' misto #' a vracela by symbol misto funkce.
vyhodnot-operator by se chovala stejné, jen by do funcall predavala symbol.

Lisp-1 vs. Lisp-2 Jak vime, Lisp ma mnoho variant. Common Lisp, ktery po-
uzivame, je takzvany Lisp-2, coz znamend, Ze pouzivad (minimélné) dva oddélené
jmenné prostory: jeden pro funkce a druhy pro ,,b&zné“ hodnoty (napiiklad pro-
ménné). Jinak feceno, symbol miZe ve stejnou dobu reprezentovat jak proménnou,
tak funkci — naptiklad muzete mit proménnou s ndzvem foo a zaroven funkei foo,
které spolu nijak nekoliduji. Tomu se fikd dvouprostorova architektura (Lisp-2).

Existujf také Lispy takzvaného typu Lisp-1 (naptiklad Scheme), které majf jen
jeden spoleény jmenny prostor: jméno foo miize reprezentovat bud funkci, nebo
hodnotu, ale ne oboji najednou. Jednoduse receno, v Lisp-1 méa kazdy symbol
praveé jednu hodnotu, at uz je to funkce, ¢islo nebo néco jiného; v Lisp-2 méa symbol
»slot“ pro hodnotu a ,slot“ pro funkei zvlast. Uvedeme piiklad kédu demonstrujici
oddéleny jmenny prostor funkei a hodnot Common Lispu:

(let ((foo 42)) ; a wariable FOO
(flet ((foo (m) (+ n 107))) ; a function FOO
(foo fo00))) ; calling function FOO with the value of the variable FOO

Lambda funkce Obcas se stane, ze potfebujeme funkci jen na jednom misté,
typicky jako parametr pro jinou funkci. Vymyslet pro ni unikatni jméno pomoci
defun je zdlouhavé a zneprehlednuje to kéd. Pro tyto ucely existuji tzv. anonymni
funkce, v Lispu nazyvané lambda funkce.

Syntaxe je stejnd jako u pojmenovanych funkci, pouze bez jména:

(lambda (x) (- 1 (* x x)))
(lambda (x y) (* x y))

Nésledny vyraz vrati funkci, ktera umocnuje svtij argument na druhou. Protoze
jde o objekt typu function, miZeme ho (stejné jako pojmenované funkce) predat
funkci funcall:

(funcall (lambda (x) (x x x)) 5) ; 25

Lambda funkce nejcastéji uvidite ve spojeni s funkcemi pro zpracovani sezna-
mil, jako je mapcar (aplikuje funkci na kazdy prvek seznamu) nebo remove-if-not
(odstrani prvky seznamu, které nevyhovujf dané podmince):

(mapcar (lambda (x) (+ x 10)) '(1 2 3)) ; (11 12 13)
(remove-if-not (lambda (x) (evenp x)) '(1 2 3 4 5)) ; (2 4)
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Proc¢ lambda? Nazev pochézi z lambda kalkulu, ktery ve 30. letech 20. sto-
leti zavedl Alonzo Church. Traduje se, ze Church puvodné pouzival stiisku nad
proménnou (napft. &). Tu presunul pred proménnou (Azx), aby se jeho nova nota-
ce nepletla s predchozimi pouziti strisky. Symbol lambda, A, si Church nakonec
vybral proto, zZe se snaze tiskne.
Pokrocilé predavani argumentu

Zatim umime definovat pouze funkce, které vyzaduji presny pocet argumentii. Po-
kud definujeme funkci (defun £ (a b) ...), musime ji volat se dvéma argumenty.
Lisp nastésti nabizi bohatou syntaxi pro flexibilnéjsi definice parametri pomoci
specidlnich kli¢ovych slov za¢inajicich znakem & (takzvand lambda list keywords,
pro vice informaci viz Lisp Docs!'V).

&optional Umoznuje definovat nepovinné parametry. Ty se uvadéji v sezna-
mu za klicovym slovem &optional. Pokud pri volani funkce nejsou zadéany, maji
hodnotu NIL, pripadné muzeme specifikovat vlastni vychozi hodnotu.

(defun pozdrav (jmeno &optional (uvodni-slovo "Ahoj"))
(format T "~a, ~a!~%" uvodni-slovo jmeno))

(pozdrav "Petr") ; => Ahoj, Petr!
(pozdrav "Pavel" "Cau") ; => Cau, Pavel!

&rest Slouzi pro funkce s proménnym poctem argumenti. Vsechny ,zbylé“ ar-
gumenty, které se nevesly do povinnych ani volitelnych, se zabali do seznamu.

(defun scitani (&rest cisla)
(apply #'+ cisla)) ; apply zavola funkci na seznam argumentu

(scitani 1 2 3 4) ; => 10

&key Klicové argumenty (keyword arguments) umoznuji preddvat parametry
podle jména, nikoliv podle pozice. To je velmi uzitecné u funkci s mnoha nasta-
venimi. Voldme je pomoci symboli zaéinajicich dvojteckou (tzv. keywords).

(defun upec-dort (&key (velikost "maly") (napln "cokolada"))
(list velikost napln))

(upec-dort :napln "jahody") ; => ("maly" "jahody")
(upec-dort :velikost "velky" :napln "vanilka")

Existuji i dalsi klicova slova, naptiklad &aux pro pomocné lokalni proménné,
ale ta se pouzivaji méné casto.

Ohttps://lisp-docs.github.io/cl-language-reference/chap-3/d-e-lambda-lists
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Makra

Ackoli jsme o nich zatim moc nemluvili, makra jsou klicovou soucasti Lispu. Makra
nam umoznuji definovat si vlastni syntaktické konstrukce, které vypadaji, jako by
byly soucasti jazyka. Oproti makrim v jinych jazycich, ktera typicky maji vliastni
syntaxi, makra v Lispu jsou vlastné jen funkce, které pracuji se s-expressions.

Predstavte si, ze bychom chtéli napsat vlastni if. Zkusime pouzit cond pro
implementaci:

(defun pokud (podminka pravda nepravda)
(cond (podminka pravda)
(T nepravda)))

Vzpomeneme si, ze symbol T reprezentuje pravdivou hodnotu. Pokud je tedy pod-
minka pravdiva, vyhodnoti se prvni vétev, jinak se vyhodnoti druhé vétev.
Problém je v tom, ze funkce v Lispu (stejné jako ve vétSiné jazykt) nejdifv
(nez se zavolaji) vyhodnot{ své argumenty. Pokud bychom zavolali (pokud (= 1 1)
(print "ano") (print "ne")), vypsalo by se ,ano“ i ,ne“, protoze se oba printy
vyhodnoti jesté pred zavolanim funkce. Makra tento problém resi tim, Ze se vyhod-
nocuji v dobé prekladu (makroexpanze) a jejich argumenty jsou nevyhodnocené
kusy kédu.

Quoting a Backquoting Abychom mohli v makrech snadno generovat kéd
(coz jsou v Lispu seznamy), pouzivame specidlni notaci. Obycejny quote (') uz
zndme — bere vSe doslovné.

(defparameter *jmenox* "Pepa')
' (ahoj *jmenox) ; => (AHOJ *JMENO*)

Casto ale chceme vytvofit seznam, ktery je z¢asti konstantni, ale na néktera
mista chceme vlozit hodnotu proménné. K tomu slouz{ backquote (-, backtick)
spolu s operdtory unquote (,) a unquote-splicing (,@).

o ~ (backtick/backquote): Zaéing ,Sablonu“ seznamu. Chové se jako quote,
dokud nenarazi na ¢arku.

o , (comma/unquote): Riké ,tady prestan citovat a vyhodnot tento vyraz‘.
Vysledek vlozi do seznamu.

o ,0 (comma-at/splice): Vyhodnoti vyraz (ktery musi vréatit seznam) a jeho
prvky ,vyleje* do okolnfho seznamu (odstrani vnéjsi zavorky).

Na ceské QWERTZ klavesnici Ize backtick napsat pomoci klavesové zkratky
A1tGr+y (ekvivalentné zapsdno A1tGr+7), kterd dé backtick nad dalsi znak, ktery
napiSeme. Kdyz hned po zminéné klavesové zkratce stiskneme mezernik, napise se
samotny backtick. Na anglické klavesnici se nachazi na samostatné klavese vlevo
nahote pod klavesou Esc.
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Priklady:

(defparameter *ax 10)
(defparameter *1x '(1 2 3))

“(seznam s a je ,*ax*) ; => (SEZNAM S A JE 10)
“(seznam s 1 je ,*1%) ; => (SEZNAM S L JE (1 2 3))
“(seznam spojeny s 1 ,@x1x) ; => (SEZNAM SPOJENY S L 1 2 3)

Nyni mazeme napsat funkéni makro pro pokud. Vsimnéte si pouziti defmacro:

(defmacro pokud (podminka pravda nepravda)
“(cond (,podminka ,pravda)
(T ,nepravda)))

Kdyz Lisp narazi na (pokud (= 1 1) (print "ano") (print "ne")), nejprve zavola
nase makro. To vrati seznam: (cond ((= 1 1) (print "ano")) (T (print "ne")))
Tento seznam pak Lisp spusti. Diky tomu se cond postara o to, ze se provede jen
ta spravna vétev.

Dalsi priklady maker Kdybychom si prali védét, kterd z vétvi se skutecéné
vyhodnotila, miZzeme si napsat makro hlasite-pokud:

(defmacro hlasite-pokud (podminka pravda nepravda)
" (cond
(,podminka (progn
(format T "Podminka ~a byla pravdiva-~%" ',podminka)

,pravda)

)

(T (progn
(format T "Podminka ~a byla nepravdiva~}%" ',podminka)
,nepravda)

)

Kombinace quote a unquote (',) mtize znit absurdné — pro¢ misto ',podminka
prosté nenapiseme podminka? Problém by byl, Ze jsme pordd v prostredi back-
quote, a Lisp by do podminka nedosadil nasi podminku, ale nechal by tam symbol
podminka. Ten ale existuje jen v dobé prekladu (jako argument makra), takze by
program spadl na chybé ,variable PODMINKA is unbound“. Pokud bychom pouzili
jen unquote (,podminka), vlozil by se sice kéd podminky, ale ten by se pii béhu
vyhodnotil a my bychom vypsali vysledek (napt. T) misto puvodniho vyrazu.

Déle si zkusme napsat makro repeat, které n-krat zopakuje zadany kod.

(defmacro repeat (n &body telo)
“(loop for i from 1 to ,n do
,0telo))
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Vsimnéte si klicového slova &body. Déla to samé, co &rest, se kterym jsme se
setkali u funkci, a je to taky lambda list keyword. V obou piipadech dostaneme
seznam argumenti. Diky unquote-splicing (,@) pak tento seznam vlozime do téla
smycky. Pouziti:

(repeat 4

(print "ahoj")

(print "svete"))

=>

; (loop for i from 1 to 4 do
; (print "ahoj")

s (print "svete"))

Nakonec uvedeme debug-print, které vypise vyraz a jeho hodnotu. Zamyslete
se, jak by se dalo zkombinovat s makrem hlasite-pokud.

(defmacro debug-print (promenna)

“(format T "Hodnota ~a je ~a~%" ',promenna ,promenna))
; (debug-print (+ 1 2))
; => (format T "Hodnota ~a je ~a~j" '(+ 1 2) (+ 1 2))

Pokrodila prace se vstupem makra Zatim jsme vSechny vstupy makra pouze
opatrné predavali do unquote a unquote-splicing. To ale neni vSechno, co se s nimi
déa délat — vstupy makra jsou normalni s-expressions, coz jsou seznamy, a s témi
umime pracovat.

V makru hlasite-vyhodnot postupné zkonstruujeme télo progn, které bude vy-
pisovat, kolik vyrazl se spusti a jakou maji délku. Pouzité funkce jsou vysvétleny
na dalsi strance.

(defun delka (vyraz) (if (atom vyraz) 1 (length vyraz)))
(defun ceska-koncovka (n) (cond
((=n0) "u") ((=n 1) ") ((<Kn5) "y") (T "u")
)
(defmacro hlasite-vyhodnot (&body telo)
(let ((pocet (length telo))
(nove-telo '()))
(progn
(dolist (vyraz telo)
(push "~ (format T "Vyraz delky ~a~J" ,(delka vyraz)) nove-telo)
(push vyraz nove-telo)
)
" (progn
(format T "Spoustim ~a vyraz~a~J" ,pocet ,(ceska-koncovka pocet))
,@(reverse nove-telo)

)
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; Zkuste:

; (macroexpand '(hlasite-vyhodnot

; (print "ahoj")

; (format T "svete, 1+2= ~a" (+ 1 2))
5 ))

Funkce atom je predikat, ktery vraci pravdu, pokud dana s-expression neni
sloZend (je to ¢islo, symbol, fetézec nebo NIL). Umoziuje ndm rozlisit atomy od
seznami s-expressions. Makro dolist iteruje pres prvky seznamu. V kazdém pri-
chodu nastavi prvni argument (zde vyraz) na aktudlni prvek seznamu (zde body)
a provede télo cyklu. Makro push vlozi novy prvek na zacatek seznamu ulozeného
v proménné (zde nove-telo). Jde o destruktivni operaci, kterd zméni hodnotu
dané proménné. Funkce macroexpand slouzi k ladéni maker. P¥ijimd vyraz (zde
volédni makra) a vréti jeho expandovanou podobu.

K procviceni muzete makro zkusit upravit tak, aby Tetézce, které vypisuje,
zforméatovalo pri kompilaci. V jeho vystupu by pak nebylo format, ale pouze
print.

Ulohy
Ve vefejném Github repozitaii https://github.com/koskja/mam-1lisp najdete
soubor zadani2.lisp s vyplnitelnymi Sablonami, do kterych mizete vepsat vas
kéd. Na konci souboru jsou testy, které ovéri, ze se kod chova spravné na nékterych
zékladnich vstupech.

Pokud budete mit problémy se souborem (tfeba vdm bude ptipadat, Ze testy
netestuji, co by mély testovat, nebo jsou néjak jinak rozbité), napiste na M&M
Discord do channelu 1isp nebo na email jan.koska®@email.cz.

Do odevzdavatka odevzdejte soubor zadani2.lisp vyplnény vasim kédem.

Uloha 4.1 [1b]: Implementujte funkci range podobné jako v Pythonu.

Uloha 4.2 [1b]: Vygenerujte seznam tretich mocnin viech lichjch cisel od 1 do
100. PouZzijte funkce mapcar, remove-if-not @ range.

Uloha 4.3 [2b]: Implementujte vlastni varianty funkci length, map, filter,
left-fold, right-fold'!| pro seznamy.

Uloha 4.4 [2b]: Implementujte makro while.

Uloha 4.5 [3b]: Implementujte makro replace-atom, které ve svém téle nahradi
vsechny vyskyty daného atomu za jiny atom.

Problém 4.6: Vymyslete néjaké makro a vysvétlete, v jaké situaci byste ho pou-
Zili.

Jan Koska; jan.koska@email.cz

odevzddvejte do odevzddvdtka

Mhttps://en.wikipedia.org/wiki/Fold_(higher-order_function)

» »

»

» »

»
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Téma 26 — Sifrovani
Sifry od Tesiteld

Sifrovaci témétko je zpét a opét se radujeme nad spoustou rozmanitych Sifer,
které nam od vés prisly. Rozhodly jsme se proto o tuto radost podélit a otisknout
nékteré vybrané kousky i vdm k lusténi i k inspiraci pro dalsi tvorbu (problém
na vymysleni Sifer uz ale uzavirdme). Opét pfipomindme, aby autofi Sifer reseni
svych sifer znovu neposilali. A ted hurd do sifrovani!

Uloha 4.1 [12b]: Vyreste ndsledugict Sifry. Zajimd nds nejen heslo, ale i princip
resent, a jak jste na néj prisli.

(a) Sifra od Mgr.™M Petra Bartdka:
Daniela odbouraly blbosti.
Ryj!
Emil spi.
1. sepsand prdce
Obr cupuje inauguraci.
Tolerance elipsy je sedmiprocentni.
abstrakini mat
O hloupém Lobotomouvi
Adiabaticky stlacil kost yetti.

(b) Sifra Karty od Mgr.™ Alezandry Gauchet:

FPRPS 134.4 ‘e
o%
v
00; OO;L L 1
34}4 ‘e e
o s
603 06;

>

<&
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(c)

(d)

Sifra od Mgr.MV Natdlie Jochové:

PeS Péta se néjakym zpusobem vyskytl v Indii. Moc se mu tam nelibilo,
a tak se vydal jinam. Nejprve sel dva dny na sever a pak tri dny na vychod
— a heleme se, skoncil v Japonsku. Tam se mu moooc libilo a udelal si tu
fotecku s horou FudZi.

V Japonsku se mu libilo tak moc, Ze se vydal jesté na ostrov Hokkaido, ktery
je jeden den cesty ma sever od jeho hotelu. Jakmile tam dorazil, ochutnal
mistni dynovou polévku a nezapomnél se timto kulindrskym zdzZitkem pochlu-
bit na instagramu.

Kdyz pak vecer sedel na pldzi, dumal nad tim, co se asi skryvd na druhé strané
téhle velké louze. A tak se tam druhy den vydal na vylet. Béhem trihodinové
cesty lodi na zdpad si uzival morského vzdousku kolem. Kdyz dorazil, zjistil,
ze je v Rusku. To ho velmi vylekalo, a pro jistotu poslal kamarddum svoji
fotku, kdyby ho uz ndhodou nikdy neuvideli.

Z Ruska rychle odjel zpdtky lodi tam, odkud rdno prijel — na ostrov Hokkai-
do. Tam si mohl oddychnout a poslat kamardadim fotku jako dikaz, Ze se ve
zdravi vratil do civilizace. Ze vSeho toho cestovani zacal byt uzZ Péta unaveny,
a tak se vydal zpdtky domi. Cesta na letisté na jihu mu zabrala ctyri hodiny.
Pak uz se jen proletél néjakych jedendct hodin na zdpad a byl zpdtky doma.
Jako proni si zasel do svoji oblibené hospody na jedno spravné vychlazeny.
Na jeho instagramu se vecer objevila fotecka s popiskem #jedineplzen.

Sifra Projizdka autem od Dr.MV Barbory Salajové:

Stalo se vam nekdy, zZe jste si od nekoho pijcili auto, on vdm predal klicky
a vy jste nastoupili v domnéni, Ze hned odjedete, ale vzdpeti jste zjistili,
zZe nevite, jak zaradit zpdtecku? Vyzkouseli jste vsechny moznosti, dopredu,
dolu, dozadu... ale ani jedna z nich nechtéla fungovat? Po nékolika minutdch
tedy zveddte telefon a voldte kamarddovi: , Promin, Ze te rusim, ale jak Ze se
radi zpdtecka?“ Ten vdm konecné poradi sprdvny zpisob: doleva a dozadu,
zaradite, a konecné jedete do vysnéné destinace.

Presné toto se mi neddvno stalo. Auto jsem si sice nepiujcovala, ale nevédéla
jsem si rady, jak zacit couvat. Zpusob razeni mé lehce prekvapil, ale coz, ne
vsechny manudly to maji stejné. Po uspésném zarazeni zpdtecky vyjizdim na
silnict do vysnéné destinace. Nejrychlejsi cesta vede pres ddlnici, na tu je
to kousek, ale snad neprejedu ndjezd. V pripojovacim pruhu se rozjizdim uz
na ctyrku a zrychluju pomalu az na nejoyssi rychlostni stupen, pétku. Stdle
se na to Tazeni musim hrozné soustredit.
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Jedu si to hezky 130 po ddlnici, na predjizdeni se obcas hodi podradit treba
na ctyrku, ale jinak pokracuju stdlou rychlosti. Jak se kochdm vyghledy na
hradek v okoli, tak se pomalu blizim k malé koloné aut. Docela necekané zpo-
maluji, takZe se spojkou radim rovnou trojku, protoZe nic vyssiho jiz neddvd
smysl. Kolona jede pomalicku vpred a zanedlouho zjistuje, Ze je zpusobena
silnicni praci, opét. V jednu chvili dokonce zastavime uplné. Rozjizdet se je
potreba samozrejme na jednicku, ale vypadd to, Ze ddl uz to pojede, takzZe
muzu ¢ dvojku.

Tak, to bylo prilis naivni. Kolona zase zastavila a jd se musim zase rozjizdét,
zase jednicka. Pomalu se plouzim spolecné s ostatnimi, ale asporn mi hraji
fajn pisnicky. Vypadd to nadéjné a myslim, Ze ted uz to pojede. UZ mdm
dvojku. Super. Vypadd to, Ze se vse rozjizdi a uz zase jedou vsichni stovkou.

No nic, dostdvam trochu hlad, a tak asi zastavim na nejblizsi benzinové
pumpé. Sjizdim, zastavuji na parkovisti a jdu si méco koupit. Nastupuju
zpet a zase to rozjizdént, ach jo, doufdm, Ze se rozjedu bez problému, protoze
v tomhle auté motor obcas trochu zlobi. Zpatecka, tak, a ted jednicka a jedem!

Ale ne, tak jesteé nejedem, musim si jesté trochu couvnout, protoze jinak do-
jedu mazimdlné do auta pred sebou. Takze, zase zpdtecka a povedlo se. Zpatky
na ddlnici, hezky se rozjet se ctyrkou stejné rychle jako ostatni a midzZeme
frcet.

Uz se blizim ke svému sjezdu a vypadd to na prudkou zatdcku. Radéji podridi-
me aZ na trojku, abych neskoncila ve svodidlech. Tak, pohoda, ddle pokracuju
po vétsi rovné silnici, kde se dd jet rychle, takZe zase ctyrka. I z této velké
silnice zanedlouho sjizdim a blizim se k chate. Tak, jsem tu, uZ jen zacouvat
na misto, zpdtecka, a je to. Nakonec to jelo hezky.

Sifra od Mgr.MM Svatavy Simeckové:

Mdm ndpad na sifru.

On mé napadl celkem neddvno.

Rym urcité pouZivat nebudu.

Soud sifer by z toho nebyl nadseny.

Er, kde byl rgm populdrni, uz maji resitelé plné zuby.
Od bych na rgm mnoho nedostala.

Vim, Ze dileZitd budou naopak pruni slova.
Au, jasné Ze si zrovna nakopnu palec.

Ja mam fakt zatracenou smulu.

Ta Sifra mi ale prijde docela dobrd.

Jen doufam, Ze se bude libit i resitelum.
Jsou fakt moc Sikovnd.
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Ti tu Sifru urcité vylusti.

Kéz by se jim i libila.

Jo, taky doufdm, Ze v tom nebudou hledat nic slozZitého.
Vidyt vétsina toho textu vibec k nicemu nend.

Ctou ho vibec?

I kdyz bych jim tam vlastne mohla ddt néjakou ndpovédu.
No, ale nebude to pak az moc zrejmé?

Tou ndpovédou bych to taky mohla celé zkazit.

Tak udéldm to?

No, ast jo.

Co kdyz si ale té ndpovédy vibec nevsimnou?

Dvou napoved by si vsimnout mohli.

T urcite.

A jd bych tu Sifru méla co nejdrive dodélat.

Jé, ono uz je tolik hodin!

Lzou ty hodiny?

Ne, jasné Ze nelZou.

Ad, to je textu!

Hou, mdm dopsano!

(f) Sifra od Johany Stéchové:
71, 13, 39, 46, 17, 39, 46, 17, 719, 93, 31,, 13, 39, 97, 14,,,

Nisleduje i pokrac¢ovani slibované étvefice s metasifrou od Doc.MV Julie Kle-
mentové.
Uloha 4.2 [6b]: A
Sifra 1
Jednoho dne sedél Tomds u svého pocitace, kdyz ndhle dostal skvéou slevu na knihu
0 magii.
Na pdé svého domu se naucil levitovat nad zemi pomoct starého kouzla.
Koupil si levny taliman na trhu s kuriozitams.
Najednou prisla zprava od jeho starého pritele Vinenta, Tomds rychle vytukal na
klavesnici odpovéd, Ze prijede.
Rozhodl se cestovat méstskou hromadnou dopravou az do daleké Ameriky, do més-
ta ashingtonu.
Tm se zucastnil rozpravy o tajemngch sildch v déjindch lidstva.
Beéhem ni rozumné rekl pravdu o svijch izarnich schopnostech.
Pozdéji se ucil pravopis v nové skole magie, aby nedéelal tak casto hrbé chyby,
a dokonce se naucil i psat vsemi deseti.
V jeho zahradé rostla kouzelnd levandule, kterd svou uni uméla lécCit.
Nakonec tak dodrzel nejdulezitéjsi pravidlo z ikipedie, tedy Ze md pomdhat ostat-
nim.
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Sifra 3

Zdvéreénd metasifra (ifry 2 a 4 najdete v predchozim ¢&isle)
Sifra 1 + Sifra 2 + Sifra 8 + Sifra 4

Olga a Pdja; Olga.dvorakoval7@gmail.com
odevzddvejte do odevzddvdtka
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Regeni 3. dilu
Zadani barevné najdete na https://mam.mff.cuni.cz/media/cislo/pdf/32/
32-3.pdt.
Uloha 3.1

Zadani:

Vyreste ndsledugici Sifry. Zajimd nds nejen heslo, ale © princip reseni a jak jste na
néj prisli. Pro potreby tisku byla do dvou Sifer doplnéna velkd pismena oznacugici
barvu (C — cervend, F - fialovd, H — hnédd, M — modrd, R — riZovd, Z - zelend,
7 — Hutd).

Stromecek

Reseni:

K feSeni je zapotiebi semaforova abeceda?, jedna z klasickych soucésti Sifrovacich
pomiicek. Pro urceni jednotlivych znaki potfebujeme tii body. Jednim je vzdy
¢ernd banka uprostied stromecku, kterd urcuje stted, a zbylé dva jsou vzdycky
dvé batiky stejné barvy. Takto dostaneme 6 pismen (protoZze na stromecku mame
celkem 6 barev). Jak je spravné sefadit za sebe ndm napovi barevna svétylka na
stromecku, ktera maji nahodou stejnych Sest barev jako banky. No a poradi se ¢te
po draté a normalné esky z levého horniho rohu. Vyjde nam heslo VANOCE.

2https://cs.wikipedia.org/wiki/Semafor_(abeceda)


https://mam.mff.cuni.cz/media/cislo/pdf/32/32-3.pdf
https://mam.mff.cuni.cz/media/cislo/pdf/32/32-3.pdf
https://cs.wikipedia.org/wiki/Semafor_(abeceda)
https://cs.wikipedia.org/wiki/Semafor_(abeceda)
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Morseovka Chystdme je, protoZe on ditkem dobre mini. Vybirdni hry. Smi vy-
pravét jingm, casomérné verse rikat must.

Reseni:

K vyteseni této Sifry je potieba prevést kazdé slovo na pismeno v morseové abecedé
podle dlouhych a kratkych slabik. Kazda véta tvoii jedno slovo tajenky.

=SS )= =] -] =) =] /-] - = RESENIM JE TRAVINA.

Set
000 0 (1] ] 00
e N XX 6
000 g8 g8e X3
ge e 00 g8
4 Y N ggg
Reseni:

Tajenka této Sifry se skryva v jednotlivych sloupcich. V kazdém musite najit set,
to znamend trojici obrazki, které se v kazdé vlastnosti (barva, tvar, pocet, vypli)
budto vSechny lisi, nebo vSechny shoduji. Nasledné si karty prevedete do binarniho
kédu: tam, kde byl set, dame ¢islo jedna, a kde nebyl, ddme 0. Timto obdrzime
pismena. Reenfm je SMYK. (10011—S; 01101—M; 11001—Y; 01011—K)

Znaky

“SIFCY JSOVU ZadjImayve dnefsrabilicnl rfemd ~

Reseni:
Po zakryt{ horni poloviny $ifry lze predist text SIFRY JSOU ZAJIMAVE A NE-
TRADICNI TEMA.
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Vysledky 2. deadlinu 2. ¢&isla a 1. deadlinu 3. cisla

Témata
Po¥. | Jméno R.|2> .| 1 2 26 5 6 7|20| 2
1.| Doc.™ M. Jarvis 4 1472,3(10,0 6,0 13,0 29,0 (97,0
2.| Doc.™ J. Klementova | 4 |450,8 4,0 13,7 8,0 25,7189,7
3.| Mgr.™ J. Thomitzek | 1 | 68,7|14,0 10,0 1,7 25,7 68,7
4.| Be.™ M. Hruba 2| 49,3 3,3 3,3149,3
5.| Dr.™M P, Stary 4 |155,6 41,3
6.| Mgr.™ S. Simeckovd | 4 | 83,2 5,7 5,7140,7
7. Be™ L. Koma 2| 43.0] 9,0 12,0 21,0(38,0
8.| Mgr.™ P. Bartik 2 | 94,1 6,0 8,0 14,0 32,2
9.| Mgr.™ J. Figerové 3| 58,7 32,0
10. | Mgr.™™ F. Dvorsk 3| 84,1[11,5 11,5 (29,0
11.| Be."™ E. Jezek 4| 288 28,8
12.| Be.™M T, Holdsek 3| 28,2 28,2
13.| Be.™M S. Bazantové 3| 24,6 7,0 3,110,1(24,6
14.| Dr.™ B. Salajové 4 1143,0| 0,5 1,0 45 6,0 22,8
15.| Be.™ R. Krzystek 31 201135 2,7 6,220,1
16.—18. | M. Stroff 4| 19,8 19,8
A. Mouchov4 3| 19,8 19,8
V. Kubrycht 4] 19,8 19,8
19.-20. | Mgr.™ S, Swaczyna | 1 | 56,7| 2,5 2,0 4,5/19,5
L. Mihola 1| 19,5 6,0 4,0 10,0 (19,5
21.| Doc.™ O. Nevsiil 4 |283,7 50 4,3 9,3]19,3
22.| Q. Liao 3| 19,0 19,0
23.| P. Fiala 4| 16,5| 5,5 5,5|16,5
24.| Mgr.™ N. Jochova 3| 62,2 5,8 5,8115,1
25.| Mgr.MM V. Kudera 4| 93,0 15,0
26. | A. Jezkova 2 | 13,0 13,0
27.| Mgr.MM A, Gauchet 41 93,3 1,2 1,2112,8
28.| Mgr.™ K. Bouchalova | 1 | 61,6 12,0
29.-30.| Dr.™ J. Jedlicka 4 |131,7 2,0 2,0(11,0
Mgr.™ F. Nouza 4| 79,1 11,0
31.| M. Vagner 3| 10,5 10,5 10,5|10,5
32.-33.| Doc."™ D. Kaiika 4 1211,9 10,0
Doc.™ M. Ambros 3 1230,6 1,0 1,0]10,0
34.| Dr.™ K. Kucerova 1 1136,5 8,5
35.-36. | M. Hosek 4| 70 7,0
S. Hrdy 4| 70 7,0
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Témata
Po¥. | Jméno R.[2.i| 1 2 26 5 6 7|22o| 21
37. | J. Kaplicky 4 | 10,7 6,0
38.| M. Pavlas 2 4,0 40 40| 4,0
39. | J. Stéchové 4 3,8 3,8 3,8 3,8
40. | K. Kucerova 1 3,0 3,0
41.-43. | L. Semberové 79| 12|12 12| 1,2
O. Plisek 1] 12|12 12| 1,2
M. Vojtéch 78| 12|12 12| 1,2
44.|J. Dingova 4 1,0 1,0
45. | J. Vospéalek 3 0,6 0,6 0,6 0,6

Sloupecek »°_; je soucet vech bodii ziskanych v nasem seminafi, ), je soucet
bodu v téchto deadlinech a ) soucet vsech bodt v tomto roéniku. Tituly uvedené
v predchozim textu slouzi pouze pro ucely M&M.

Casopis M&M je zastfeen Matematicko-fyzikalni fakultou Univerzity Karlovy. S ob-
sahem casopisu je mozné naklddat dle licence CC BY 4.0. Autory text jsou, neni-li
uvedeno jinak, organizatori M&M. Realizace projektu byla podporena Ministerstvem
skolstvi, mlddeze a télovychovy. Pokud si ¢asopis neprejete dale dostavat v tisténé po-
dobé, zruste si prosim jeho odbér v nastaveni svého uctu na webu.

Kontakty: }‘4

M&M, OPMK, MFF UK E-mail: mam@matfyz.cz
Ke Karlovu 3 Web: mam.matfyz.cz l
121 16 Praha 2 FB: casopis.MaM
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