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Uvnitř najdete několik témat a s nimi souvisejících úloh. Zamyslete se nad nimi a pošlete
nám svá řešení. My vám je opravíme a ta nejzajímavější z nich otiskneme. Nejlepší řešitele

zveme na podzim a na jaře na soustředění.
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Milí řešitelé,
školní rok se nám překulil do druhé poloviny a spolu s ním i celém M&Mko.
Vánoční víkendovka už je za námi, příprava jarního soustředění v plném proudu
a vy držíte v rukou už čtvrté číslo našeho časopisu. Co najdete uvnitř?

S velkou slávou se vrací témátko Grupy, opět oděno ve fyzikálním hávu. Kdo se
bojí kvantovky, nesmí do lesa symetrií (leda že by byl velmi odvážný). Pokud jste
se s prvním dílem témátka Kombinatorika naučili počítat, určitě nesmíte minout
díl druhý. Dozvíte se, jestli jste to minule spočítali správně, ale hlavně získáte
dovednost pro matematika ještě zásadnější – totiž jak nepočítat. Informatická
archeologie bude také pokračovat, proto si nachystejte své závorky. Témátko LISP
přichází s meta-programováním v podobě maker! A konečně Šifrovací témátko se
strategickým číslem 26 vám přináší (kromě řešení z minula) další sadu důmyslně
promyšlených šifer od ostatních řešitelů.

Témátka Brainfuck, Výpočetní geometrie a Elektrostatika se s námi v tomto
čísle rozloučí skrze řešení dříve zadaných úloh a problémů, ať už organizátorská,
nebo přímo od vás.

Přejeme příjemné čtení a těšíme se na viděnou!
Vaši orgové M&M
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Zadání a řešení témat
1. deadline: 24. února 2026 | 2. deadline: 17. března 2026

Téma 1 – Grupy aneb Kterak matika k souměrnosti
přišla

Díl 3: Kalibrační teorie
Třetí díl našeho témátka zamýšlí ukovat slibované pouto mezi teorií grup a stan-
dardním modelem částicové fyziky. Oním poutem jsou tzv. kalibrační teorie (angl.
gauge theories) – teorie pole, jejichž lagrangián je neměnný vůči lokálním transfor-
macím. Nezoufejte, nečekali jsme, že vyřčenou větu bez pomoci pochopíte. Ihned
se jmeme vysvětlit. Podotýkáme však, že – podobně jako v díle minulém – budeme
poněkud volně využívat jazyka lineární algebry1.

Kvantové teorie pole
Ve fyzice značí slovo pole fyzikální veličinu, jež je popsána pomocí skaláru, vektoru
či tensoru2 nabývajícího hodnoty v každém bodě časoprostoru. Obyčejně budeme,
zanedbávajíce časovou složku, mluvit prostě o hodnotě polí v bodech prostoru.
Uveďme pár příkladů.

Polem, jež je popsané jediným číslem (tedy skalárem), může být například
teplota. Lze ji vnímat jako funkci T (x, y, z, t), jež obdrží trojici (x, y, z) souřadnic
v prostoru a čas t a vrátí teplotu v daném bodě a čase.

Příkladem vektorového pole budiž proudění vzduchu na povrchu Země. Dí-
vejme se na ně jako na funkci A(x, y, z, t), která každému bodu přiřadí vektor
(d1, d2, d3) značící směr větru v bodě (x, y, z) a čase t. Velikost vektoru (d1, d2, d3)
pak vyjadřuje rychlost větru.

Mezi tensorovými poli najdeme kupříkladu tensor napětí. Vyberme si nějaký
vnitřní bod tělesa x = (x, y, z) a libovolnou rovinu procházející tímto bodem.
Tato rovina vlastně „rozřízne“ těleso na dva kusy. Jednotkový vektor kolmý na
tuto rovinu (též normálový vektor) označme n. Napětí (jako veličinu se směrem
a velikostí), které jeden kus tělesa vytváří na druhý kus v bodě x podél zvolené
roviny, můžeme vyjádřit jako vektorové pole S(n)(x) o třech složkách závislé na
vektoru n (tj. na volbě roviny) a bodu x. Ovšem, tento popis naznačuje, že napětí
v bodě x umíme popsat pouze pomocí nekonečného množství vektorů S(n)(x) –
jeden vektor pro každou jednu rovinu s normálovým vektorem n. Zde přispěchá na
pomoc tzv. Cauchyova věta o napětí 3, která stvrzuje, že stačí znát vektor S(n)(x)
ve třech vzájemně kolmých rovinách procházejících bodem x. Jelikož tři vzájemně

1Zájemci o tuto stránku matematiky buďtež odkázáni na témátko Vektory a matice z 31. roč-
níku.

2O tensorech lze přemýšlet jako o maticích, jejichž prvky mohou být čísla (skaláry) nebo též
další matice. Více například zde: en.wikipedia.org/wiki/Tensor.

3Detailní popis tensorového pole napětí včetně jeho odvození přes newtonovskou mechaniku
hledejte například na engcourses-uofa.ca/books/introduction-to-solid-mechanics/stress/
cauchy-sensor-tensor/.

en.wikipedia.org/wiki/Tensor
engcourses-uofa.ca/books/introduction-to-solid-mechanics/stress/cauchy-sensor-tensor/
engcourses-uofa.ca/books/introduction-to-solid-mechanics/stress/cauchy-sensor-tensor/
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kolmé vektory tvoří bázi třídimensionálního prostoru, lze dále odvodit z této věty,
že existuje 3×3 matice σ(x) nezávislá na n, pro kterou platí, že S(n)(x) = σ(x) ·n.
Řečeno slovy, matice σ(x) obsahuje informace o stavu napětí (ve „všech směrech“)
v bodě x. Na napětí se pročež můžeme dívat jako na tensorové pole σ(x, y, z, t),
které danému bodu x = (x, y, z) přiřadí matici σ(x) popisující napětí v tomto
bodě v čase t. Tušíme, že tento odstavec byl velmi objemný. Kéž zmatení zmírní
visuální doprovod v podobě obrázku 1.

Obrázek 1: Složky tensoru napětí v bodě krychle vzhledem ke třem vzájemně kolmým
rovinám (stěnám krychle). Hodnoty σij představují složky matice σ.

Nemáme vám za zlé, ctění čtenáři, podezíráte-li nás ze zbytečného obchvatu.
Přeci, k čemu nám je popis fyzikálních veličin přes pole, když nás zajímají ele-
mentární částice? Částice nejsou veličiny. Či … jsou? Jako mnoho věcí v kvantové
mechanice – jsou i nejsou. Totiž, co přesně nazveme fyzikální veličinou? Například
teplo intuitivně vnímáme jako „vlastnost“ tělesa, která se může v jeho různých bo-
dech lišit. Špatně udělaný steak je na povrchu horký, ale vevnitř studený. Nicméně,
přechod od teplého bodu na povrchu ke chladnému vevnitř je plynulý – na úsečce
spojující tyto body teplota klesá postupně, nikdy nárazově. V tomto pojetí leží
elementární částice někde mezi svým intuitivním pojetím jako isolovaného bodu
v časoprostoru a tepelným polem. Fakt, že elektron (či kterákoli jiná elementární
částice) ve hvězdě v galaxii Andromeda je dokonale totožný s elektronem v křovi-
nách parku Stromovka, naznačuje, že v jistém smyslu je každý jednotlivý elektron
pouze lokálním „projevem“ mnohem abstraktnějšího objektu: elektronového pole,
jež prochází celým vesmírem. V rámci jednoduchosti si můžeme představovat, že
je v daný čas toto pole nulové všude ve vesmíru vyjma body, kde se nacházejí
elektrony. Elektrony jsou pak stabilními výkyvy v tomto jinak v zásadě nulovém
poli. Pro srovnání vizte obrázek 2.
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(a) Příklad tepelného pole. (b) Příklad elektronového pole.

Obrázek 2: Rozdíl mezi klasickým a kvantovým polem. Pro přehlednost jsou obě pole
vykreslena pouze ve dvou dimensích prostoru.

Kvantová mechanika s sebou ovšem nese jistý svízel. Elementární částice se ne-
chovají stejně jako tělesa, kterak jsou vnímána našimi smysly. Totiž, elementární
částice obývají několik míst najednou. Teprve jejich sloučení (formálně superposi-
ci) bychom mohli nazvat „skutečnou polohou“ částice. Jeden oblíbený, přestože
nepřesný, příměr je ke strunám na kytaře. Každá jednotlivá struna vibruje s roz-
dílnou frekvencí (výškou tónu) a amplitudou (hlasitostí). Teprve sloučení zvuků
všech strun můžeme nazvat „skutečným zvukem“ kytary. Kvantová pole v kaž-
dém bodě a čase nabývají více hodnot zároveň. Formálně se tento jev modeluje
ve fyzice tak, že kvantová pole nabývají komplexních hodnot místo reálných. Tato
vlastnost kvantových polí bude v dalším textu důležitá jen implicitně; přesto jsme
shledali užitečným ji zmínit.

Lokální symetrie a kalibrační pole
Mezi hmototvornými částicemi (fermiony) nacházíme tak zvané kvarky. Každý
kvark může být jedné ze tří barev – červené, zelené a modré. Této jejich vlastnosti
přezdíváme barevný náboj či zkrátka barva. Ovšem, jak je možná zřejmé, slovo
„barva“ je zde pouze pohodlným vyjádřením faktu, že každý kvark4 má vlastnost,
jež může nabývat tří různých hodnot. Spojitost s obvyklým pojetím barev je
nulová. Tušíme, bohužel, že v makroskopickém světě jen stěží nalézti vlastnost,
k níž bychom uměli barevný náboj kvarků přiměřit.

Existence barevného náboje s sebou ihned přináší jistou symetrii. Skutečnost,
že je konkrétní kvark červený, zelený či modrý, nemá žádný fyzikální dopad; jed-
ná se o pouhé pojmenování. Důležitý je pouze fakt, že tři kvarky stejného typu

4Jednotlivé typy kvarků vyjmenujeme v omezené míře později. Podrobný přehled hledejte
třeba v článku https://en.wikipedia.org/wiki/Quark.

https://en.wikipedia.org/wiki/Quark
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(tj. tři výkyvy v témže kvantovém poli) mohou být tří různých barev. Přirovná-
ní lze učinit případem elektronu a jeho antičástice (tzv. positronu). Elektron má
záporný elektrický náboj, zatímco positron má kladný elektrický náboj. Ovšem,
zda nazveme rozdílný náboj „kladným“ a „záporným“ či „levým“ a „pravým“ či
„slaným“ a „sladkým“ je naprosto bezvýznamné. Smyslu nabývá pouze tvrdit, že
má-li elektron jistý elektrický náboj, pak positron má ten druhý.

Do prostoru barevného náboje se tato idea přenáší přímočaře. Místo jednodi-
mensionální reálné5 přímky, na níž můžeme libovolné číslo označit za elektrický
náboj elektronu, sobě představme třídimensionální prostor s osami representující-
mi každou ze tří zmíněných barev. Za barevný náboj jistého kvarku nyní můžeme
zvolit libovolný vektor v tomto prostoru – ten představuje volbu náhodného čís-
la na každé ze tří barevných os. Jiný barevný náboj stejného kvarku pak bude
zkrátka vyjádřen odlišným vektorem v témže prostoru.

Nyní, fakt, že konkrétní hodnota (vyjádřena vektorem) barevného náboje kvar-
ku je irelevantní, dává vzrůst hned dvěma zdánlivě souvisejícím, ale prakticky od-
lišným symetriím. Totiž, abychom například z červeného kvarku vyrobili modrý,
můžeme celý prostor zrotovat kolem zelené osy. Obecně, rotací můžeme z třídi-
mensionálního vektoru vyrobit kterýkoliv jiný vektor stejné velikosti. Provádíme-
-li tuto rotaci v každém bodě pole (tedy vlastně rotujeme barevný náboj v celém
vesmíru naráz), hovoříme o symetrii globální. Příklady globálních symetrií hledejte
v předchozím díle témátka; patří mezi ně tamže diskutovaná symetrie translační,
spjata se zachováním hybnosti.

Přestože globální symetrie mají ve standardním modelu své místo, mnohem
zajímavější jsou symetrie lokální. Kvarky vykazují chování, které si lze jen obtížně
představit. Že vlastnosti kvantového pole nezkreslíme pouhým přejmenováním čer-
vených kvarků na modré je vcelku přirozené; bdělosti hodné však je, že kvantové
pole v každém bodě můžeme rotovat jinak! Konkrétně, rotaci v třídimensionál-
ním prostoru lze representovat vhodnou 3×3 maticí. V každém bodě x = (x, y, z)
prostoru volme matici rotace R(x) a barevný náboj kvantového pole nějakého
kvarku v témže bodě označme q(x). Kvantová chromodynamika6 stvrzuje, že fy-
zikální vlastnosti pole s barevným nábojem R(x)q(x) jsou dokonale neodlišitelné
od pole s nábojem q(x).

Uvědomme si, co přesně existence takové symetrie znamená: hodnoty q(x1)
a q(x2) mohou být ve dvou bodech x1 a x2 shodné, ale hodnoty R(x1)q(x1)
a R(x2)q(x2) rozdílné. Z modrého kvarku se může na jednom místě stát červený
a na jiném zelený bez jakékoliv pozorovatelné změny fyzikálního systému, jejž
obývají. To však neznamená, že by barevný náboj samotný neměl efekt – mod-
rý kvark s červeným interaguje jinak, než se zeleným. Jak se tedy může stát, že
výsledek interakce kvarků s náboji q(x1) a q(x2) je stejný jako interakce kvarků
s náboji R(x1)q(x1) a R(x2)q(x2)?

5Z důvodů zmíněných výše obvykle komplexní. Zjednodušujeme za účelem přístupnosti geo-
metrické představy.

6Disciplína studující vlastnosti interakce mezi elementárními částicemi přímo souvisejícími
s barevným nábojem.
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Odpověď zní, že musí existovat způsob, jak porovnat barevné náboje dvou
kvarků, přestože lze prostor tří barevných os libovolně otáčet v každém bodě
zvlášť. Představme si, že se jeden kvark blíží k jinému podél nějaké trajektorie.
Abychom jeho barevný náboj mohli po této trajektorii přenášet společně s ním,
musíme mít informaci o tom, co znamená udržovat vektor konstantní vzhledem
k dané rotaci barevného prostoru v každém bodě dráhy. Přenosu vektoru podél
křivky tak, aby byl v každém jejím bodě konstantní, se v diferenciální geometrii
říká paralelní přenos. Zjednodušený příklad vizte na obrázku 3, kde se kvark
s barevným nábojem a v bodě x1 blíží ke kvarku s barevným nábojem b v bodě x2.
Jsou-li tyto dva náboje z fyzikálního pohledu „stejné“, bude výsledkem paralelního
přenosu vektoru a z bodu x1 vektor b v bodě x2. Za (silného) předpokladu, že
barevný prostor rotujeme v jistém smyslu spojitě (tedy ve dvou blízkých bodech
jsou provedené rotace podobné), můžeme si onen přenos představit jako postupné
rotování vektoru a ve vektor b.

a

x1

R

G

B b
x2

R

G

B

Obrázek 3: Paralelní přenos vektoru barevného náboje a z bodu x1 do bodu x2. Vektor
b v bodě x2 představuje „stejný“ barevný náboj jako vektor a v bodě x1.

Onu „informaci“, jak přenášet vektor podél dané křivky, zakódujeme v po-
době tensorového pole T . Bude jím ovšem tensorové pole výrazně složitější, než
například tensorové pole napětí zmíněné v předchozí sekci. Totiž, abychom mohli
spočítat, kterému vektoru bude odpovídat vektor a v jistém bodě x dané křivky,
musíme uchovávat informaci o tom, jak se v bodě x mění každý možný vektor
barevného náboje v každém možném směru pohybu (směr pohybu je zde tečný
vektor ke křivce v bodě x). Jelikož vektory barevného náboje i pohybu kvarku mů-
žeme vyjádřit vzhledem ke zvoleným bázím (například barevných os pro barevný
náboj a souřadnicových os pro 3D prostor) definujeme T (x) vzhledem k těmto bá-
zím jako 3× 3 matici, jejíž prvky jsou však opět 3× 3 matice. Například, vnitřní
maticí na pozici (1, 3) (první řádek, třetí sloupec) vnější matice T (x) bude matice,
která vektor ležící na první barevné ose otočí tak, jako bychom jej posouvali po
křivce, která má v bodě x směr třetí souřadnicové osy.

Tensorovým polím, která umožňují paralelní přenos vektorů po křivkách, se
v diferenciální geometrii říká konexe a snadněji se představují jako funkce, které
dostanou dva vektory a vrátí jeden. V našem případě obdrží vektor barevného
náboje a vektor směru pohybu v daném bodě a vrátí vektor představující „stejný“
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barevný náboj. Že je takováto funkce ekvivalentní právě popsané matici T (x) zde
obhajovat pro úsporu místa, času i duchovní kapacity nebudeme.

Přišel-li vám předchozí odstavec příliš komplikovaný, nebědujte; s tensorovými
poli nebudeme potřebovat nic počítat, ani se o nich nijak šířeji zmiňovat. Shrnuto,
aby mohl barevný náboj každého kvarku vykazovat lokální symetrii, musí existo-
vat kvantové pole, které v sobě nese informace, díky kterým lze barevné náboje
dvou kvarků porovnat s ohledem na provedené lokální transformace. Takovým
polím se obecně (tedy i v případě veličin různých od barevného náboje) říká ka-
librační.

Doufáme, že právě přemyšlujete, k čemu to celé vede. Inu, kalibrační pole
nejsou jen výplod nespoutané představivosti teoretických matematiků; mají sku-
tečnou fyzikální podobu, a to právě v podobě silonosných částic! Vskutku, fluk-
tuace kalibračních polí jsou přesně ty částice, jimž fyzikové říkají kalibrační bo-
sony a které zprostředkovávají tři ze čtyř tzv. základních sil: elektromagnetismus
a slabou a silnou nukleární sílu. Ovšem, v závěru právě učiněné diskuse je snad
intuitivně nevhodné uvažovat o kalibračních bosonech jako o nositelích „sil“ –
přikláníme se spíše k představě nositelů „informace“. Takže, částice „infonosné“,
„datanosné“...?

Po velké objížďce putujeme konečně k cíli, kde aspoň zevrubně popíšeme kvan-
tová pole konkrétních elementárních částic a kalibrační pole, jimž lokální symetrie
těchto kvantových polí dávají vzniknout.

Elektromagnetismus
Elektron patří mezi elementární částice zvané leptony – hmototvorné částice, kte-
ré narozdíl od kvarků nemají barevný náboj; mají však náboj elektrický. Všechny
elementární částice mají rovněž vlastnost zvanou spin, již však s cílem jednodu-
chosti zanedbáme. Pročež, elektrický náboj budeme vnímat jako jedinou zásadní
vlastnost elektronu a elektronové pole pro nás bude komplexní skalární pole znače-
né ψe− . Připomínáme, že komplexnost pole ψe− modeluje fakt, že se pole nachází
ve „více stavech zároveň“.

Jak jsme nahlédli již v minulé sekci, konkrétní hodnota elektrického náboje je
irelevantní, důležitá je pouze schopnost porovnat elektrický náboj dvou částic. Po-
dobně jako barevný náboj, i elektrický náboj vykazuje lokální symetrii vzhledem
k jeho změně na libovolné jiné komplexní číslo stejné velikosti. Nahlédneme-li na
komplexní číslo ψe−(x) jako na bod v komplexní rovině, pak všechna komplexní
čísla o stejné velikosti leží na kružnici se středem v počátku a poloměrem právě
této velikosti.

Zde bychom rádi přivedli vaši paměť zpět ke grupě Un z úlohy 1.5 prvního
dílu témátka. Tam jsme zpozorovali, že komplexní čísla eik

2π
n všechna leží na

(komplexní) kružnici o poloměru 1 a úhel mezi dvěma po sobě jdoucími je přesně
2π/n. Na tento geometrický fakt se dá pohlédnout i jinak: totiž, můžeme spočítat,
že

ei(k+1) 2π
n = ei

2π
n · eik 2π

n ,
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čili násobení číslem ei
2π
n vlastně otočilo číslo eik

2π
n o úhel 2π/n. Bez důkazu

tvrdíme, že tento argument funguje zcela obecně. Pro libovolné číslo z ∈ C a úhel
θ ∈ [0, 2π) platí, že eiθz je číslo z otočené o úhel θ. Vizte obrázek 4.

Re

Im

z

ei
π
4 z

ei
π
2 z

Obrázek 4: Rotace komplexního čísla z ∈ C o úhly π/4 a π/2.

Nyní už můžeme definovat grupu lokálních symetrií elektronového pole. Ať
x je jako vždy bod prostoru a θ(x) ∈ [0, 2π) je úhel závislý na x. Fakt, že pole
lze v každém bodě zvlášť rotovat o libovolný úhel a nezměnit tak jeho chování,
znamená, že hodnotu ψe−(x) můžeme nahradit hodnotou eiθ(x)ψe−(x). Snadno
ověříme, že pro každý úhel θ má komplexní číslo eiθ velikost 1 a součin dvou
takovýchto čísel má rovněž velikost 1. Z toho plyne, že množina

{eiθ | θ ∈ [0, 2π)}
tvoří grupu vzhledem k běžnému násobení komplexních čísel. Značíme ji U(1).
Neformálně na ni můžeme nahlížet jako na grupu, která vznikne z grupy Un, když
číslo n „pošleme do nekonečna“. Tuto myšlenku podpírá geometrická představa,
že kružnice je „mnohoúhelník s nekonečně mnoha vrcholy“.

Právě popsaná lokální symetrie elektronového pole zaručuje existenci kalib-
račního pole umožňujícího porovnat elektrický náboj dvou částic podél dané křiv-
ky. Výkyvům tohoto pole se říká fotony, částice světla, a základní síle, kterou
zprostředkovávají, elektromagnetismus. Tušíme, že představa světla jako „nosiče
informace o rozdílnosti elektrického náboje“, bude řadě čtenářů nová.

Ve sledu výsledku Emmy Noether o souvislosti mezi symetriemi a zachovanými
veličinami diskutovaném v minulém díle snad není překvapivé, že lokální symetrie
elektronového pole s sebou nese zákon zachování elektrického náboje ve smyslu,
který právě popíšeme. Totiž, vágní formulace „nemění chování fyzikálního systé-
mu“, již jsme v průběhu témátka několikrát použili, má formální paralelu v tvrze-
ní, že lagrangián tohoto systému je neměnný vůči uvažované lokální transformaci.
V případě elektromagnetismu onen systém obsahuje elektronové a fotonové pole7

7Přesnou podobu lagrangiánu kvantové elektrodynamiky zde uvádět pro složitost nebude-
me. Lze nalézt na https://en.wikipedia.org/wiki/Quantum_electrodynamics#Mathematical_
formulation.

https://en.wikipedia.org/wiki/Quantum_electrodynamics#Mathematical_formulation
https://en.wikipedia.org/wiki/Quantum_electrodynamics#Mathematical_formulation
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(to označíme písmenem γ), jež spolu interagují. Lagrangián, jak známo, je roz-
díl kinetické a potenciální energie systému. Potenciální energie systému závisí na
hmotnostní energii částic. Hmotnostní energie elektronu zase závisí na hodnotě
|ψe−(x)|2, tedy vlastně na absolutní hodnotě čísla ψe−(x). Tuto skutečnost je nad
rámec témátka plně objasnit; intuici snad trochu pomůže myšlenka, že pod hmot-
ností si obyčejně představíme kladné reálné číslo. Zůstává tato hodnota konstantní
i po transformaci ψe−(x) 7→ eiθ(x)ψe−(x)?

Vskutku ano. Totiž, pro libovolné komplexní číslo z ∈ C platí

|z|2 = zz,

kde z značí číslo komplexně sdružené k z. Je jednoduché spočítat, že eiθ = e−iθ,
a tedy

|eiθ(x)ψe−(x)|2 = eiθ(x)ψe−(x)eiθ(x)ψe−(x) = e−iθ(x)ψe−(x)eiθ(x)ψe−(x)
= e−iθ(x)eiθ(x)ψe−(x)ψe−(x) = ψe−(x)ψe−(x) = |ψe−(x)|2,

tedy hmotnostní energií elektronu je opravdu neovlivněna. Nabízí se však otázka,
čemu odpovídá hodnota ψe−(x)? Inu, představují-li hodnoty ψe−(x) elektrony,
pak hodnoty pole ψe−(x) popisují positrony, částice s nábojem opačným elek-
tronům. Tím se dostáváme k jádru věci. Totiž, energie systému rovněž závisí na
interakci mezi fotonovým polem γ a elektronovým polem ψe− . Matematicky se
taková interakce projevuje pouhým součinem výrazů závisejících na hodnotách
obou polí. Ovšem, fotony jsou částice bez elektrického náboje. Aby nedošlo ke
změně lagrangiánu vlivem lokální symetrie, musí tento „interakční člen“ obsaho-
vat součin fotonového pole s vhodným výrazem čítajícím stejný počet elektronů
i positronů (pro vykrácení čísel eiθ(x) s čísly e−iθ(x)). Ve skutečnosti nastává nej-
jednodušší situace – onen součin je právě γ(x) ·ψe−(x)ψe−(x) a představuje právě
zákon zachování elektrického náboje. Říká totiž, že při interakci elektronu a posi-
tronu – dvou částic s opačným elektrickým nábojem – dochází ke zrodu fotonu –
částice s nulovým elektrickým nábojem.

Tímto jsme samozřejmě nedokázali, že symetrie ψe−(x) 7→ eiθ(x)ψe−(x) zacho-
vává lagrangián kvantové elektrodynamiky; to je zcela nad rámec témátka. Pouze
jsme poukázali na omezení, jež lokální symetrie elektronového pole klade na členy
tohoto lagrangiánu a jejich fyzikální interpretaci.

Slabá nukleární síla
Slabá nukleární síla je interakce přenášena třemi typy bosonů – tak zvanými
W+,W− a Z bosony. Její existence je ekvivalentní (nedokonalé) lokální symetrii
vlastnosti jak kvarků, tak leptonů, (tedy všech fermionů – hmototvorných částic)
zvané vůně. Tuto vlastnost nebudeme zkoumat tak podrobně jako elektrický ná-
boj a zůstaneme ve svém vyjádření spíše strozí. Vůně každé částice může nabývat
jedné ze dvou hodnot, representujeme ji pročež jako komplexní vektor o dvou
složkách. Zde musíme striktně vzato hovořit o neúplné symetrii, neboť existuje
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šest různých druhů vůně – tři pro kvarky a tři pro leptony – a hmototvorné částice
se dělí na generace podle toho, který z těchto druhů mohou vlastnit. Pro jejich
seznam vizte tabulku 1. Například kvark první generace může vonět buď nahoru
nebo dolů a jeho kvantové pole je lokálně symetrické vzhledem k záměně těchto
dvou hodnot. Avšak, kvarky druhé generace voní podivně, nebo půvabně. Nemůže
se stát, aby kvark druhé generace voněl třeba dolů.

Tabulka 1: Fermiony standardního modelu po generacích vůně.

I. II. III.

Kvarky u horní
d dolní

c půvabný
s podivný

t svrchní
b spodní

Leptony
νe el. neutrino
e− elektron

νµ mi. neutrino
µ− mion

ντ ta. neutrino
τ− tauon

V úloze 2.2 minulého dílu jsme nahlédli, jak vypadají matice rotací o daný
úhel v reálném prostoru o třech dimensích. Dvě jejich vlastnosti jsou významnější
než jiné: pro matici rotace R platí RTR = I a její determinant je roven 1. Pro
teď bez důkazu budeme tvrdit, že tyto dvě vlastnosti charakterisují úplně všechny
matice rotace (o libovolný úhel kolem libovolné přímky) v R3. Pro nás je klíčové,
že v komplexních prostorech lze matice rotací charakterisovat velmi obdobně.

Je-li X ∈ Cm×n komplexní matice o m řádcích a n sloupcích, tak k ní hermi-
tovsky sdruženou matici definujeme jako transponovanou matici k X, kde každé
číslo nahradíme jeho komplexně sdruženým. Značíme ji X∗. Například, je-li

X =

(
1 + i 2 −2− 2i
−i 3− i 0

)
∈ C2×3,

pak

X∗ =

 1− i i
2 3 + i

−2 + 2i 0

 ∈ C3×2.

Na hermitovské sdružení se můžeme dívat jako na paralelu transponování ma-
tic v reálných číslech. Velmi mnoho vlastností transponovaných reálných matic se
přenáší na hermitovsky sdružené komplexní matice. Jedním příkladem je právě
charakterisace rotačních matic. Totiž, matice popisující rotace v komplexním pro-
storu jsou právě ty matice X s determinantem 1, pro které platí, že X∗X = I.

Protože vůně je dvoudimensionální komplexní vektor, její lokální symetrií bu-
de otočení na jakýkoliv jiný vektor stejné velikosti. Z předchozího odstavce známe
grupu matic zodpovědných za takové transformace. Značíme ji SU(2). Symbolic-
ky,

SU(2) = ({X ∈ C2×2 | X∗X = I a detX = 1}, ·,−1 , I),

čili SU(2) je množina komplexních 2 × 2 matic udávajících rotace spolu s běž-
ným násobením a invertováním matic. Poněkud prostoduše můžeme tvrdit, že
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slabá nukleární síla existuje jako důsledek lokální SU(2)-symetrie vůní fermionů.
Závěrem vám na mysl přivedeme jedno zajímavé pozorování. Nejmenší možný po-
čet rodin generátorů SU(2) je tři, jako je i počet různých kalibračních bosonů
zprostředkujících slabou nukleární sílu. Rodinou (či úplně jednoparametrickou ro-
dinou) generátorů zde myslíme množinu matic z SU(2), které závisejí na pouze
jednom (komplexním) parametru. Například, celá grupa U(1) je takovou rodinou,
neboť každý její prvek lze napsat ve tvaru eiθ, kde onen parametr je právě úhel
θ. Dalším příkladem může být třeba množina všech matic(

a 0
0 −a

)
pro nějaké reálné číslo a.

Silná nukleární síla
Zákuskem tohoto dílu témátka je silná nukleární síla, spjata s lokální symetrií
barevného náboje, který jsme již zmínili. V zásadě lze jeho předchozí zhmotnění
v předšedším textu přenést plynule sem s tím rozdílem, že barevný náboj kvarků
(leptony barevný náboj nemají) je komplexní třísložkový vektor. Lokální symetrií
barevného náboje je rotace tohoto vektoru na kterýkoliv jiný o stejné velikosti
v každém bodě zvlášť. Jako v případě slabé nukleární síly, i zde takovou trans-
formaci popisují komplexní matice X – tentokráte 3 × 3 – jejichž determinant
je roven 1 a splňující X∗X = I. Grupě takových matic darujeme symbol SU(3).
Není již nic, co bychom si přáli o barevném náboji vyřknout a neučinili jsme tak
již dříve. Jedině snad ponoukneme vaše cenné šedé buňky mozkové informací, že
SU(3) lze generovat osmi jednoparametrickými rodinami matic – takový je i počet
různých částic silné nukleární síly, tzv. gluonů.

Matematická formulace standardního modelu
Vzhledem k objemu tohoto dílu nám přijde záhodno učinit jisté závěrečné shrnutí,
než standardní model částicové fyziky nadobro i nazlo opustíme. Elementární čás-
tice dělíme na hmototvorné (fermiony) a silonosné (mezi nimi kalibrační bosony).
Vlastnosti fermionů vykazují jisté významné lokální symetrie, které lze vysvět-
lit existencí kalibračních polí zprostředkujících interakce mezi fermiony. Částicím
těchto polí říkáme kalibrační bosony a jsou zodpovědné za tři ze čtyř základních
interakcí či sil. Když fyzikové hovoří o „matematické formulaci“ standardního
modelu, obyčejně mají na mysli kartézský součin grup

U(1)× SU(2)× SU(3),

který v sobě nese téměř úplnou informaci o lokálních symetriích fermionových
polí. Elektrický náboj leptonů je lokálně U(1)-symetrický, což garantuje existenci
fotonů – částic světla. Vůně kvarků i leptonů zase vykazuje SU(2)-symetrii a dává
vzniknout W+,W− a Z bosonům, nositelům slabé nukleární síly. Konečně, barva
kvarků je lokálně SU(3)-symetrická a interakci, kterou přidružených osm typů
gluonů umožňuje, zveme silnou nukleární silou.
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Úloha 4.1 [3b]: Dokažte, že

SU(n) = ({X ∈ Cn×n | X∗X = I a detX = 1}, ·,−1 , I),

je opravdu grupa. Smíte použít kterýchkoliv vlastností matic a jejich determinantů
z témátka Vektory a matice z předchozího ročníku.

Úloha 4.2 [až 12b]: V sekci o slabé nukleární síle jsme tvrdili, že SU(2) lze gene-
rovat třemi rodinami komplexních 2× 2 matic. Postupně vás provedeme důkazem
tohoto tvrzení. Rozdělili jsme jej na části, abyste si mohli zvolit, kterým se hodláte
věnovat. Za jednotlivé části lze získat body zvlášť.

1. Dokažte, že každá matice X ∈ SU(2) lze napsat ve tvaru

X =

(
a b

−b a

)
pro komplexní čísla a, b ∈ C.

(a) [1b] Předpokládejte, že X je obecná 2× 2 komplexní matice, čili

X =

(
a b
c d

)
,

a rozepište, které všechny rovnosti pro čísla a, b, c, d ∈ C plynou z pod-
mínek X∗X = I a detX = 1. Nezapomeňte, že zz = zz = |z|2 pro
jakékoli z ∈ C.

(b) [1b] Upravte rovnost |a|2+|b|2 = |c|2+|d|2 plynoucí z X∗X = I tak, aby
obsahovala pouze čísla b a c. Doporučujeme využít rovností detX = 1
a |c|2 + |d|2 = 1.

(c) [2b] Odvoďte, že c = −b. Nabízíme tři pomůcky. Platí z + z = 2Re(z)
pro jakékoli z ∈ C, kde Re(z) je reálná část čísla z. Když si už ne-
budete vědět rady, jak výraz dále upravit, doporučujeme čísla b a c
přepsat do „algebraického“ tvaru x+ iy. Konečně, c = −b právě tehdy,
když Re(c) = −Re(b) a Im(c) = Im(b), kde Im pro změnu značí část
imaginární.

(d) [1b] Znovu využijte rovnosti X∗X = I a výsledku z (c), abyste dokázali,
že d = a.

2. [1b] Vezměme úhly α, β ∈ [0, 2π) a uvažme dvě rodiny matic:

Z(α) =

(
eiα 0
0 e−iα

)
, Y (β) =

(
cosβ sinβ
− sinβ cosβ

)
.

Ukažte, že Z(α) i Y (β) jsou matice z SU(2) pro každé α, β. Argumentujte,
že jejich součin je též matice z SU(2).
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3. [2b] Ukažte, že každá matice X ∈ SU(2) lze zapsat jako součin tří matic
z těchto rodin jako

X = Z(α)Y (β)Z(γ)

pro vhodné úhly α, β, γ ∈ [0, 2π). Napovíme, že je užitečné použít tvar matice
X z bodu 1. a též si uvědomit, že rovnost |a|2+|b|2 = 1 klade důrazné omezení
na možné hodnoty čísel a, b ∈ C.

4. [4b] Dokázali byste geometricky interpretovat (s dostatečným komentářem)
matice Z(α) a Y (β). Co vlastně „dělají“ s dvoudimensionálními komplex-
ními vektory? Můžeme si posléze nějak představit i jejich součin?

Problém 4.3: Existuje domněnka, že i gravitace, jako čtvrtá fundamentální in-
terakce, je zprostředkována hypotetickými (ve smyslu „nenaměřenými“) bosony,
zvanými gravitony. Ty by vznikaly důsledkem lokální symetrie tensoru energie
a hybnosti. Hrubě řečeno má tento tensor čtyři složky – tři prostorové a jednu ča-
sovou. Lokální symetrie, která jej transformuje, spočívá v rotaci zvlášť prostorové
a zvlášť časové, tedy v rotaci, která sice transformuje celý časoprostor, ale pro-
storové souřadnice se nesmějí „prolnout“ s časovými. Dokázali byste najít grupu
takových transformací?

Při řešení problému smíte využít jakékoli online zdroje, dokud je pochopíte
a dokážete vysvětlit.

Problém 4.4: Jak jsme v témátku již zmiňovali, počet prvků z jednoparamet-
rických rodin, který je potřeba na vyjádření libovolného prvku z grupy lokálních
symetrií dané vlastnosti fermionů, odpovídá počtu bosonů, jež ztvárňují příslušnou
fundamentální interakci. Tedy, v případě elektrického náboje, jehož grupou lokální
symetrie je U(1), je tímto bosonem pouze částice světla. V případě chutě a SU(2)
jsou to tři bosony a v případě SU(3) (kde každá matice lze napsat jako součin
osmi matic závislých na jednom parametru) je částic nesoucích silnou nukleární
sílu osm. Zkuste tento jev vysvětlit.

Při řešení problému smíte využít jakékoli online zdroje, dokud je pochopíte
a dokážete vysvětlit.

Adam, Jáchym; grupytematko@gmail.com
odevzdávejte do odevzdávátka

mailto:grupytematko@gmail.com
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Řešení 2. dílu
Úloha 1

Zadání:
Vymyslete možný konfigurační prostor, který lze použít k popisu fyzikálního systé-
mu dvojitého kyvadla8, tedy systému, kde je na jednom kyvadle zavěšeno druhé.
Nemusíte být rigorósní; stačí uvést množinu s intuitivním objasněním důvodu její
volby.

Řešení:
U úloh tohoto typu člověk často rychle skáče k nejjednoduššímu řešení; my se
ve jménu konstruktivity pokusíme k řešení probrat podrobněji a ze všech stran.
Začneme s co nejvíce informacemi o systému a budeme postupně vyřazovat ty
přebytečné nebo neměnné.

Na začátku je také důležité zmínit, že neexistuje jeden nejlepší konfigurační
prostor, v praxi bychom z těch možných použili ten nejužitečnější. Toto rozhodnutí
můžeme učinit pouze s cílem v mysli, který my postrádáme, a tak jich ukážeme
více.

Všechny rozumné veličiny, které můžeme uvažovat v systému o dvou kyvadlech,
jsou znázorněné na obrázku 5. Jde o úhly obou kyvadel od vodorovné osy (θ1, θ2),
délky jednotlivých kyvadel (l1, l2), váhy hmotných bodů na konci kyvadel (m1,m2)
a nakonec rychlosti těchto hmotných bodů (~v1, ~v2).

m1

m2

l1

l2

θ1

θ1

~v1

~v2

Obrázek 5: Zajímavé veličiny v systému dvou kyvadel.

Jako první vyřadíme z konfiguračního prostoru všechny konstantní veličiny.
V našem případě se jedná o l1, l2 a m1,m2. Ty technicky nevyřazujeme úplně,
stále je potřebujeme pro počítání, ale svojí neměnností napříč stavy konfigurač-
nímu prostoru nepřidávají nic zajímavého.

8Vizte např. en.wikipedia.org/wiki/Double_pendulum.

en.wikipedia.org/wiki/Double_pendulum
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Zbyly nám tak dvě dvojice proměnných, o nichž rozhodujeme, zda jsou vhodné
pro konfigurační prostor. Dvojice úhlů očividně vhodná je, protože každý stav je
touto dvojicí jednoznačně určen. Dvojice rychlostí tuto vlastnost bohužel nemá,
ilustrujeme si nejednoznačnost na příkladu: Představte si, že dostanete dvojici
rychlostí (0, 0), jak byste nakreslili dvojité kyvadlo? Tak je jasné, že obě kyvadla
budou ve svém nejvyšším bodě, ale kde takový bod je? To z dvou nul nezjistíme.

Abychom dostáli svému slibu ukázat více než jeden možný konfigurační pro-
stor, poukážeme na to, že zakončení každého kyvadla určíme jednoznačně jeho
souřadnicemi – nějakou dvojicí z R2. Tyto body máme dva a tak za konfigurační
prostor máme R4.

Ti teorie dimenze znalí z vás si určitě povšimli jedné domnělé nesrovnalosti
mezi konfiguračními prostory zde přednesenými. Pokud prostor popíšeme pomocí
úhlů, má dvě dimenze – je to víceméně R2, zatímco použivše souřadnice máme
najednou dimenze čtyři. Za tento zmatek v dimenzích si můžeme, jako vždy, sa-
mi; v druhém případě máme prostě některé informace navíc a dvě dimenze jsou
nedosažitelné. Tento problém můžeme podle rčení „moudřejší ustoupí“ ignorovat,
dokud ovšem dostaneme něco nazpět (například průzračnější vhled do problema-
tiky nebo jednodušší výpočty).

Úloha 2
Zadání:

1. Dokažte, že matice Rx(θ) je opravdu maticí rotace kolem osy x o úhel θ.
Případný obrázek, prosíme, nezapomeňte doplnit rozumným argumentem.

2. Dokažte, že z rovnosti y = Rx(θ)x opravdu plyne rovnost ẏ = Rx(θ)ẋ.

3. Dokažte, že platí Rx(θ)
TRx(θ) = I.

Řešení:
1. První zjednodušení celého problému se nalézá v pozorování, že matice Rx(θ)

při součinu 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

xy
z

 =

 x
y(cos θ − sin θ)
z(sin θ + cos θ)


nijak nemění x-ovou souřadnici. Což je jednak vlastnost, kterou bychom
očekávali, a druhak vlastnost, jež nám dovolí se na problém dívat ve 2D.
Nejdříve si rozmyslíme, jak otočit libovolný vektor ve 2D a poté tento oto-
čený vektor porovnáme s násobením maticí Rx(θ). Chceme-li otočit vektor
( yz ), stačí otočit vektory ( 10 ) a ( 01 ), vynásobit tyto rotace koeficienty y, z
a výsledky sečíst.
Z obrázku 6 je jasné, jak dopadne otočení zmíněných vektorů o úhel θ.
Následujíce postup načrtnutý v předchozím odstavci, získáváme jako rotaci
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vektoru ( yz ) vektor

y

(
cos θ
sin θ

)
+ z

(
− sin θ
cos θ

)
=

(
y(cos θ − sin θ)
z(sin θ + cos θ)

)
,

což je přesně ten očekávaný výsledek (až na souřadnici x, která ale při rotaci
podle osy x zůstává identická).

2. Z rovnice y(t) = Rx(θ)x(t) se k té kýžené dostaneme jednoduchou derivací.
Derivace levé strany je triviálně ẏ(t). Pro derivaci pravé strany je důležité si
uvědomit, že Rx(θ) je konstantní a mění se pouze x(t). Výsledkem je tedy
Rx(θ)ẋ(t).

y

x
( 10 )

( cos θ
sin θ

)
Rx(θ)

( 01 )(− sin θ
cos θ

) Rx(θ)

Obrázek 6: Rotace vektorů ( 1
0 ) , (

0
1 ) o úhel θ.

3. Třetí rovnost dokážeme jednoduše roznásobením součinu Rx(θ)
TRx(θ).1 0 0

0 cos θ − sin θ
0 sin θ cos θ

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


=

1 0 0
0 cos2 θ + sin2 θ − cos θ sin θ + cos θ sin θ
0 − cos θ sin θ + cos θ sin θ cos2 θ + sin2 θ


=

1 0 0
0 1 0
0 0 1


Úloha 3

Zadání:
Možná jste, sečtělí čtenáři, slyšeli o zákonech zachování jiných veličin než hybnosti.
Mezi nimi je například zákon zachování tzv. „momentu hybnosti“9. V závěsu

9Lze si o něm přečíst např. opět na Wikipedii: cs.wikipedia.org/wiki/Moment_hybnosti.

cs.wikipedia.org/wiki/Moment_hybnosti
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předchozího textu snad není překvapující, že je i tento zákon ekvivalentní jisté
symetrii fyzikálního systému, v němž platí. Nás by zajímalo vědět, která symetrie
to je a hlavně (co vám výmluvnost dovolí) proč.

Řešení:
Abychom nemuseli tápat v nekonečnu možných symetrií, pomůžeme si na začá-
tek výzkumu edukovaným tipem. Pokud je moment síly zachován díky translační
symetrii a moment hybnosti je rotační obdobou momentu síly, dává smysl se
domnívat, že hledáme rotační obdobu translační symetrie – symetrii rotační. Pro-
zřivše touto symetrií symetrií (metasymetrií, chcete-li) přednášíme, výmluvností
obdaření, důvod k tomuto důsledku.

Snažíme se odůvodnit, že z rotační symetrie vyplývá zákon zachování momentu
hybnosti. Jako už mnohokrát, pomůžeme si obměněnou implikací. Přenesme se
tedy do vesmíru, ve kterém neplatí zachování momentu hybnosti. Jinými slovy,
existuje nějaký disk, jenž se jen tak sám od sebe začne točit okolo některé osy.
Pokud se v takové chvíli pokusíme uplatit rotační symetrii a celý vesmír otočíme
podle jiné osy, než podle které se točí náš disk, zjistíme, že neplatí. Došli jsme
k jinému výsledku experimentu (disk se najednou z našeho pohledu točí podle jiné
osy než předtím) jen na základě rotace celého vesmíru, čímž jsme náš výsledek
dostatečně odůvodnili.
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Téma 2 – Brainfuck
Závěr

Během prvních dvou dílů tohoto ročníku jsme se podívali do prapodivného svě-
ta ezoterických programovacích jazyků, konkrétně na Brainfuck. Tento na první
pohled primitivní jazyk nám ukázal, že se v něm dá vytvořit téměř cokoliv, jak
jsme mohli vidět např. v parametrizovaném řešení hry života od Doc.MM Micha-
ela Jarvise. Nakonec bych pro inspiraci rád přiložil řešení vytváření komplexních
Brainfuck programů od Bc.MM Lukáše Komy: https://mam.mff.cuni.cz/media/
prilohy/32-4-t2-Koma.zip.

Vašek; vaclav.tichy.mam@gmail.com

https://mam.mff.cuni.cz/media/prilohy/32-4-t2-Koma.zip
https://mam.mff.cuni.cz/media/prilohy/32-4-t2-Koma.zip
mailto:vaclav.tichy.mam@gmail.com
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Téma 3 – Elektrostatika
Řešení 1. dílu

Úloha 1.1
Zadání:
Uvažujme dvě stejně nabité částice s nábojem q a se stejnou hmotností m. Obě jsou
zavěšené na nitích o délce l v laboratoři na Zemi. Obě nitě visí ze stejného bodu na
stropě laboratoře a v laboratoři je vakuum. V jakém úhlu θ od svislé přímky musí
nitě být, aby se soustava nepohybovala? (Tedy alespoň vzhledem k laboratoři.)
Stačí nalézt algebraickou rovnici, jejímž řešením bude hledaný úhel, není třeba
dopočítávat.

Řešení od Matěje Hoška:

Řešení této úlohy jsem započal nákresem situace.

(a) Nákres situace v laboratoři (b) Rozbor sil působících na jeden z ná-
bojů

Obrázek 7: Nákres pro úlohu 1.1

Do levého obrázku (7a) jsem si zakreslil situaci v laboratoři: dva hmotné náboje
velikosti q a hmotnosti m zavěšené na nitích délky l, mezi kterými se vlivem
působení odpudivé síly vytvořila mezera velikosti d a nitě se vychýlily pod
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úhlem θ. Do pravého obrázku (7b) jsem si pak nakreslil rozbor sil působících na
jeden z nábojů. Symetrická situace nastává i u druhého náboje. Na náboj působí
tíhová síla ve svislém směru a elektrická síla ve vodorovném směru směrem pryč
od druhého náboje. Jejich výslednice je pak ve směru nitě, její výchylka od
svislého směru je tedy stejná jako výchylka nitě. Z pravoúhlých trojúhelníků
pak můžeme psát:

sin(θ) = d

2l
,

tan(θ) = FE

FG
.

Jelikož rovnice pro elektrickou sílu závisí na vzdálenosti nábojů d, rozhodl jsem
se proto si d vyjádřit z první rovnice a dosadit do rovnice druhé. Zároveň si
můžeme rozepsat tangens jako podíl sinu a kosinu, jelikož se nám sinus objevuje
i v první rovnici.

d = 2l sin(θ)

sin(θ)
cos(θ)

=

1
4πε0

· q2

4l2 sin(θ)2

m · g

Nyní ekvivalentními úpravami převedeme sin(θ)2 na levou stranu rovnice a úpra-
vou zlomku získáme výslednou rovnici.

sin(θ)3

cos(θ)
=

q2

16l2mgπε0

Vztah, který vyšel, není vůbec pěkný. Vykreslíme-li si graf levé strany rovni-
ce, zjistíme, že se chová podobně jako tangens, jen s pomalejším náběhem do
asymptoty. Pravou stranu si pak můžeme zkontrolovat úvahou – zvětšíme-li ná-
boj q, zvětší se funkční hodnota našeho „tangentu“, a tedy i úhel a vzdálenost
mezi náboji. Zvětšíme-li ale délku nitě l, úhel se naopak zmenší, což je očeká-
vané chování. Zvětšíme-li přeponu a nezměníme-li protilehlou odvěsnu, úhel se
zmenší.

Úloha 1.2

Zadání:
Mějme čtyři stejné náboje v rovině, každý zafixovaný ve vrcholu čtverce se stra-
nou a. Spočtěte sílu působící na každý náboj a elektrickou intenzitu ve středu
čtverce. Jaká síla by působila na náboj stejné velikosti, ale opačného znaménka
vložený do středu čtverce? Byla by tato poloha stabilní?
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Řešení od Matěje Hoška:

Řešení úlohy jsem opět započal nákresy.

(a) Rozbor sil působících na náboj ve vr-
cholu čtverce

(b) Rozbor elektrické intenzity

Obrázek 8: Nákres pro úlohu 1.2

Začněme situací v levém obrázku (8a). Na náboj umístěný ve vrcholu působí
silami zbylé tři náboje, celkovou sílu tedy můžeme určit jako součet těchto
příspěvků. Pro jednodušší znamení budu dále používat Coulombovu konstantu
k = 1/4πε0.

~F = ~F1 + ~F2 + ~F3 = k

(
q2

a2
r̂1 +

q2

a2
r̂2 +

q2

2a2
r̂3

)
Jelikož směr součtu vektorů r̂1 a r̂2 má stejný směr jako r̂3, můžeme sečíst síly
~F1 a ~F2, jejichž výslednice pak bude mít stejný směr jako ~F3. Ve skalární formě
pak získáme výraz

F = k

(
q2
√
2

a2
+

q2

2a2

)
,

odkud můžeme vytknout q2/a2, čímž získáme výsledek. Výsledná síla pak působí
ve směru r̂3, tedy po úhlopříčce směrem ven ze čtverce.

F = k
q2

a2
1 + 2

√
2

2

Druhou část úlohy pak můžeme vyřešit jen úvahou – elektrická intenzita ve
středu čtverce bude nulová, jelikož se působení všech nábojů vyruší. Čtyři ná-
boje čtverce si můžeme rozdělit do dvou dvojic nábojů ležících proti sobě po
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úhlopříčce (8b). Ty pak leží na opačných stranách středu čtverce, jejich příspěv-
ky k elektrické intenzitě tedy musí mít opačný směr. Jejich velikost bude také
stejná, jelikož náboje jsou stejné a jsou stejně daleko. Pro rozhodnutí o stabi-
litě této konfigurace tedy stačí jen rozhodnout o stabilitě nábojů ve vrcholech.
Ty budou stabilní za předpokladu, že síla, kterou na ně bude působit náboj ve
středu, bude přesně opačná, než síla, kterou na sebe působí navzájem. Podle
definice tedy náboj ve středu působí silou o velikosti:

FS = −k q2(
a
√
2

2

)2 = −k 2q
2

a2
.

Směr nové síly je správný – přidaný náboj leží na úhlopříčce čtverce, síla bude
tedy působit ve správném směru. Její velikost je ale jiná, než velikost síly nábojů
ve vrcholech. Z obou rovnic pro síly můžeme vytknout Coulombovu konstantu
a druhé mocniny náboje a strany čtverce, čímž zjistíme, že po přidání náboje
do středu čtverce náboje z vrcholů se přiblíží do středu, jelikož 2 > (1+2

√
2)/2.

Přitažlivá síla tohoto náboje je silnější, než odpudivé síly zbylých nábojů.

Úloha 1.3
Zadání:
Uvažujme kruhový prstenec s rovnoměrnou délkovou hustotou náboje λ a polo-
měrem R. Jaký je průběh intenzity na ose prstence v závislosti na vzdálenosti
od středu? Možná vám připadá problematické, že vztah ~Ec = ~E1 + ~E2 platí pro
bodové náboje. Pro spojité rozložení náboje budeme postupovat analogicky. Vždy si
určíme nekonečně malý element náboje a spočteme příspěvek elektrické intenzity
od něj pomocí Coulombova zákona. Následně všechny takové příspěvky posčítáme.
Pro výpočet tedy zkuste použít vztah:

~E =
1

4πε0

∫
dq
r2
r̂,

kde dq = λdl a integrujte od 0 do 2πR. Nezapomeňte, že r2 je vzdálenost od
elementu prstence, ne od středu. Tedy r2 = R2 + z2 kde z je vzdálenost od středu.
Dejte si pozor na směr r̂, protože nebude stejný jako jednotkový vektor ve směru
osy. Kam bude výsledná intenzita mířit?

Řešení od Doc.MM Julie Klementové:

Máme kruhový prstenec s rovnoměrným rozložením náboje, jehož element je na
kružnici s poloměrem R. Bod pozorování je na ose prstence ve vzdálenosti z od
středu. Vzdálenost mezi elementem a bodem je r =

√
R2 + z2. Pozorovací bod

je na ose, takže pro symetrii se složky kolmé na osu všech elementů vzájemně
ruší. Výsledná intenzita má tedy směr podélně na osu prstence, takže ve směru
osy z.
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Protože symetrické složky se ruší, stačí počítat jen složku intenzity ve směru
osy z:

• element intenzity: ~E = 1
4πε0

· dq
r2

• složka podél osy: ~Ez = dE cosα, kde α je úhel mezi r̂ a osou z

• pomocí pravoúhlého trojúhelníku: cosα = z
r = z√

R2+z2

• integrace přes celý prstenec:

– celkový náboj prstence je Q = λ · 2πR
– délka elementu prstence je dl = R dϕ, kde ϕ ∈ (0,2π)

– element náboje je dq = λR dϕ
– velikost intenzity od elementu je dE = 1

4πε0
· λR dϕ
R2+z2 , r

2 je konstatní
pro každý element prstence, protože všechny body na kružnici jsou
od osy prstence stejně vzdálené.

• složka ve směru osy:

dEz = dE cosα =
1

4πε0
· λR dϕ
R2 + z2

· z√
R2 + z2

=
1

4πε0
· λR dϕ
(R2 + z2)

3
2

dϕ

• integrace přes celý prstenec:

Ez =

∫ 2π

0

dEz =
1

4πε0
· λRz

(R2 + z2)
3
2

∫ 2π

0

dϕ =
1

4πε0
· λRz

(R2 + z2)
3
2

· 2π

• výsledný vztah:

Ez =
1

4πε0
· 2πλRz

(R2 + z2)
3
2

=
1

4πε0
· Qz

(R2 + z2)
3
2

,

kde Q = 2πλ je celkový náboj prstence.

Výsledná intenzita směřuje ve směru osy prstence (tj. ve směru osy z). Pokud
je náboj Q > 0 a z > 0, směřuje od prstence.

Úloha 1.4
Zadání:
Jakou silou bude působit dipól o dipólovém momentu ~p na náboj velikosti q v těchto
konfiguracích?

1. Dipól je orientovaný v pravém úhlu ke spojnici středu dipólu a náboje.

2. Dipól míří přímo na náboj.
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Řešení od Doc.MM Julie Klementové:

1. Dipól orientovaný kolmo ke spojnici středu dipólu a náboje

• úhel mezi ~p a r̂ je 90◦, tedy ~p · r̂ = p cos 90◦ = 0

• intenzita pole: ~E = 1
4πε0

1
r3 (3× 0× r̂ − ~p) = − 1

4πε0

p
r3

• síla na náboj: ~F = q ~E = − 1
4πε0

q~p
r3

• směr síly je tedy opačný než ~p a jeho velikost je 1
4πε0

qp
r3 .

2. Dipól míří přímo na náboj

• úhel mezi vektory je 0◦, tedy ~p · r̂ = p cos 0◦ = p

• intenzita pole: protože ~p a r̂ jsou ve stejném směru, můžeme psát ~p = pr̂,
tedy

~E =
1

4πε0

1

r3
(3pr̂ − ~p) =

1

4πε0

1

r3
(3pr̂ − pr̂) =

1

4πε0

2p

r3
r̂

• síla: ~F = q ~E = 1
4πε0

2p
r3 r̂, její velikost je 1

4πε0

2p
r3 .

Úloha 1.5
Zadání:
Pokud mám konfiguraci čtyř stejně velkých nábojů, dvou kladných a dvou zápor-
ných, jak bude vypadat celkový dipólový moment? Zkuste z toho vyvodit, jak se
sčítají dipólové momenty, pokud počítáme celkový dipólový moment konfigurace
více dipólů.

Řešení od Doc.MM Michaela Jarvise:

Systém si popíšeme jako dva dipóly v jednom bodě. Výsledná elektrická inten-
zita je pak

~E =
1

4πε0

1

r3
(3(~p1 · r̂)r̂ − ~p1) +

1

4πε0

1

r3
(3(~p2 · r̂)r̂ − ~p2)

~E =
1

4πε0

1

r3
(3(~p1 · r̂)r̂ − ~p1 + 3(~p2 · r̂)r̂ − ~p2)

~E =
1

4πε0

1

r3
(3(~p1 · r̂ + ~p2 · r̂)r̂ − ~p1 − ~p2)

~E =
1

4πε0

1

r3
(3((~p1 + ~p2) · r̂)r̂ − (~p1 + ~p2))

Celkový dipólový moment je jednoduše ~pc = ~p1 + ~p2.
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Úloha 1.6
Zadání:
Mějme dipól v homogenním elektrickém poli. Bude na něj působit nějaká síla?
Spočtěte moment síly, který by působil na dipól v homogenním elektrickém poli.
Spočtěte ho pro co nejobecnější situaci, tedy když dipól není orientovaný souběžně
s polem ani kolmo na pole. (Homogenní vektorové pole je takové pole, které má
všude konstantní velikost a všude míří stejně.)

Řešení od Doc.MM Michaela Jarvise:

Na dipól nebude působit žádná síla, protože síla na kladný náboj a síla na
záporný náboj dipólu se vyruší. Avšak bude na něj působit točivý moment.
Na kladný náboj bude působit moment τ+ = q ~E × ~d

2 . Na záporný náboj bude
působit moment τ− = −q ~E × −~d

2 .
Celkový moment vychází:

τ+ + τ− = q ~E × ~d = ~E × ~p.

Úloha 1.7
Zadání:
Mějme dipól připevněný k pojízdnému vozíku na kolejnicích a mějme kruhovou trať
vytvořenou z kolejí. Dipól je připevněný tak, že vždy míří ve směru tečném k trati.
Uprostřed tratě mějme bodový náboj. Jaká síla bude působit na dipól? (Zkuste
odpovědět alespoň kvalitativně.) Jaktože se nejedná o perpetuum mobile?

Řešení od Vojtěcha Kubrychta, Aleny Mouchové a Michala Stroffa:

To je velice zajímavý mechanismus. Na základě výsledku z úlohy 1.4 víme, že
síla působí ve stejném směru, jako ukazuje dipól (opačně, než jsme spočetli,
díky akci a reakci), konkrétně

~F =
q~p

4πε0r3
,

což nutně znamená, že síla vždy působí ve směru jízdy a to by mělo vozík
bezlimitně urychlovat. Není tomu tak, už jen logiky věci, že pole náboje upro-
střed je konzervativní (platí, že jeho rotace je nulová), pokud se nehýbe, což
předpokládám. Když je pole konzervativní, nelze z něj vydolovat při návratu
do stejného bodu nějakou energii navíc. Co se tam tedy ale děje? Jednoduše,
aby mohl jezdit po kružnici a udržovat se v požadovaném směru, je potřeba
neustále vykonávat práci na natáčení dipólu, protože tím, jak je dipól oriento-
ván, by pro něj bylo energeticky výhodnější otevírat se směrem od středu, ne se
neustále stáčet ke středu jak vyžaduje trajektorie, tato energetická podmínka
(společně ještě s třením apod.) je dost náročná na to, aby ji energetický zisk
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z podvolení se translační síle mohl kompenzovat. Proto se vozík ani nerozje-
de a když ho postrčíme, časem zbrzdí (vlivem tření a nějakého generovaného
záření, hádám).

Úloha 1.8
Zadání:
Odvoďte vztah

~E =
1

4πε0

1

r3
(3(~p · r̂)r̂ − ~p). (1)

Hint: Položte si záporný náboj do počátku soustavy souřadnic a kladný náboj
na osu z. Poté si napište vztah pro elektrickou intenzitu takovéto konfigurace podle
~Ec = ~E1 + ~E2. V jednom členu bude vystupovat velikost separačního vektoru od
kladného náboje (od záporného je to prostě vzdálenost od počátku), tedy vektoru
spojujícího zkoumaný bod s kladným nábojem. Jeho velikost spočtěte pomocí kosi-
nové věty. Dále budete chtít jít se vzdáleností mezi náboji k nule. Upravte vztah,
který jste dostali z kosinové věty, a použijte aproximaci:

(1 + x)α = 1 + αx,

pro velmi malé x. Dosaďte pak vše do výrazu pro elektrickou intenzitu a zkuste
spočíst limitu, kdy vzdálenost mezi náboji jde k nule. Pamatujte, že součin náboje
a této velikosti je velikost dipólového momentu a ta se s limitou měnit nebude. Po
tomto výpočtu si jen uvědomte, čemu je ve vztahu (1) roven člen (~p · r̂).

Řešení od Vojtěcha Kubrychta, Aleny Mouchové a Michala Stroffa:

Použít navržený hint je samozřejmě rozumná možnost, ovšem já moc nemusím
popis pomocí intenzit a už vůbec ne nějaké jejich pracné sčítání, proto se poku-
sím vztah odvodit pomocí potenciálů. Protože platí ~E = −∇ϕ, nepoužíváme-
-li v elektrostatice popis elektrického pole pomocí nestacionárního vektorového
potenciálu, a zároveň nabla je lineární operátor, platí princip superpozice i pro
skalární potenciál ϕ. Potenciál bodového náboje je jednoduše

kQ

r
.

Umístíme-li si do počátku soustavy souřadnic kladný náboj +q a na osu z do
vzdálenosti d záporný náboj −q, dostáváme celkový potenciál ve tvaru

ϕ(~r) =
kq√

x2 + y2 + z2
− kq√

x2 + y2 + (z − d)2
≈

≈ kq

(√
x2 + y2 + z2 − 2dz + d2 −

√
x2 + y2 + z2

x2 + y2 + z2

)
.
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√
x2 + y2 + z2 označíme jako r a škrtneme řád O(d2).

ϕ(~r) ≈ kq

(
r
√
1− 2dz/r2 − r

r2

)
≈ kq

1− dz/r2 − 1

r
= kq

dz

r3

No a qdz odpovídá v naší volbě souřadnic skalárnímu součinu ~p · ~r.

ϕ(~r) = k
~p · ~r
r3

Protože aproximace použité výše platily pro malá d a d je nekonečně malé ve
výsledku, je výsledný potenciál dipólu exaktním řešením problému. Tento vztah
by měl být invariantní vůči rotaci soustavy souřadnic, proto volba obou nábojů
na ose z nezpůsobila žádnou újmu na obecnosti.

Dále spočteme gradient tohoto potenciálu.

~E = −∇ϕ = −k∇(~p · ~r)
r3

+ 3k
~p · ~r∇r
r4

Poměrně triviálně, když si rozderivujeme skalární součin ~p · ~r, dojdeme rychle
k tomu, že ∇(~p · ~r) = ~p. Zároveň je ∇r už jen intuitivně podle definice gra-
dientu kolmý na křivky konstantního r, tedy by měl nějak ukazovat (i s ohle-
dem na rozměr výsledku) jednotkový vektor r̂. Po parciálním rozderivování
r =

√
x2 + y2 + z2 se o tom lehce přesvědčíme. Výsledkem je tedy

~E = k

(
3(~p · ~r)r̂
r4

− ~p

r3

)
.

Za použití normy r̂ = ~r/r máme intenzitu el. pole kolem dipólu ve tvaru, který
je uveden v textu.

~E =
1

4πε0r3
(3(~p · r̂)r̂ − ~p)

Radim N.; radim05@post.cz

mailto:radim05@post.cz
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Téma 4 – Výpočetní geometrie
Řešení úloh

Ahoj, možná si někdo ještě pamatuje na první číslo a možná ještě čekáte na
pokračování témátka o výpočetní geometrii. To zde sice nedostanete, ale alespoň
se podívám na řešení zadaných úloh.

Úloha 1.3
Zadání:
Pokud je počet průsečíků k ∈ O(n2), je sweeping algoritmus lepší než naivní
algoritmus, ve kterém procházíme všechny možné průsečíky?

Řešení:
Ne. Naivní přístup zkusit každou dvojici úseček by trval

(
n
2

)
∈ O(n2) času. Za-

tímco zametací algoritmus by vyšel na O(n2 logn).

Úloha 1.4
Zadání:
Náš odhad délky seznamu bodů akce S je trochu hrubý (O(n+k)). Lehkou úpravou
analýzy algoritmu lze zkrátit jeho délku na nejvýše O(n). Ukažte ji.

Řešení:
Můžeme si rozmyslet následující: Všechny body akce v seznamu korespondují
s nějakým průsečíkem na zametací přímce a každý průsečík přidává do seznamu
nejvýše dva body. Tedy délka seznamu bude nejvýše 2n, kde n je počet úseček.

Úloha 1.5
Zadání:
Zlepší předchozí úprava složitost algoritmu?

Řešení:
Předchozí úprava nijak nezmění asymptotickou časovou složitost, protože jak
logn, tak i logn2 jsou ve stejné asymptotické třídě, neboť:

logn2 = 2 logn

Obecně dobrým nápadem, jak řešit úlohy, bylo prvně zkusit použít zametací
algoritmus. Zkusme si tedy na úloze 1.7 ukázat, jak přesně by to bylo možné
udělat.

Úloha 1.7
Zadání:
Máme n trojúhelníků tak, že žádné dva se neprotínají. Nalezněte algoritmus, který
v čase O(n logn) o každém trojúhelníku rozhodne, zda je obsažen v jiném. Ná-
sledně algoritmus upravte tak, že ve stejném čase pro každý trojúhelník nalezne
trojúhelník, ve kterém je obsažen.
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Řešení:
Prvně si úlohu zjednodušme a zamysleme se, jak tuto úlohu vyřešit pro dva troj-
úhelníky A a B. BÚNO řekněme, že trojúhelník A je obsažen v trojúhelníku B.
Pak existuje vodorovná přímka q, která protíná oba trojúhelníky.

Označme si průsečíky přímky q s trojúhelníky A a B jako A1, A2 a B1, B2 s tím,
že A1 je více napravo než A2 a obdobně B1 než B2. Zde je dobré si rozmyslet, že
A1 a A2 mohou být jeden a ten samý bod, nám to ale nijak vadit nebude.

Pak platí, že body na přímce q jsou uspořádané takto: B1, A1, A2, B2. Jak
ale takovou přímku q najít? Celkem jednoduše – stačí nám vzít libovolný bod
v A. Naopak, pokud nalezneme libovolný bod v A, pro který předchozí vlastnost
neplatí, tak A není obsažen v B.

Nyní můžeme tento postup zkusit zobecnit pro libovolně velkou množinu troj-
úhelníků. Vezmeme si zametací algoritmus (sweep-line) a vložíme do něj všechny
hrany trojúhelníků. Uděláme jenom drobnou úpravu: v každém vrcholu na zame-
tací přímce si budeme držet, zda je obsažena v nějakém trojúhelníku.

Ve chvíli, kdy poprvé zametací přímka protne nějaký trojúhelník A, podíváme
se na dané přímce o jednu doprava a jedna doleva. Pokud oba průsečíky patří
nějakému trojúhelníku B, pak A je obsažen v B. Pokud nějaký z těchto průsečíků
je obsažen v trojúhelníku C, pak A je také obsažen v C (jinak by to nemohl být
nejbližší průsečík na přímce, protože nějaký z bodů C by musel být blíže).

Pokud ale ani jeden z těchto průsečíků nepatří žádnému trojúhelníku, pak A
není obsažen v žádném trojúhelníku. I zde se použije obdobný argument: kdyby
byl v nějakém trojúhelníku D obsažený a nejbližší v žádném ne, musely by být
průsečíky D blíže než nejbližší průsečíky na přímce q, a to je spor.

Zametací algoritmus nám umožňuje udržovat průsečíky trojúhelníků se zame-
tací přímkou v čase O(n logn), kde n je počet trojúhelníků. Tedy daný problém
umíme řešit v tomto čase.

Úloha 1.6
Zadání:
Lenka se rozhodla, že se dá na chov ovcí. Pořídila si tedy ohradu R ve tvaru
mnohoúhelníka. Ovce jí ale z ohrádky utíkaly, a tak každé dala růžovou stužku
s GPS lokátorem (ten vrací informaci, v jakém bodě se zrovna ovečka nachází).
Čas od času chce Lenka zkontrolovat, zda jsou všechny její ovečky v ohradě. Po-
mozte Lence pro každou ovečku rozhodnout, zda je v ohradě. Navrhněte algoritmus
a odhadněte jeho složitost v závislosti na počtu oveček a počtu vrcholů ohrady.

Řešení:
Zde se dá použít velmi obdobný přístup jako v 1.7. Místo trojúhelníků ale použi-
jeme body.
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Úloha 1.14
Zadání:
Orgové se rozhodli, že si spolu zahrají na schovávanou. Pan Kostička ale byl nějak
podezřele dobrý. Vojtovi to nedalo a rozhodl se ověřit, zda mohl pan Kostička své
spoluorgy vidět. K dispozici má plánek m překážek (úseček) a n hráčů a pozici
pana Kostičky. O každém hráči můžete uvažovat jako o bodu. Pomozte Vojtovi
nalézt algoritmus, který mu řekne, zda daný hráč byl zrovna vidět z pozice pana
Kostičky, nebo ne.

Řešení:
Opět je možné použít zametací algoritmus. Je ale nutné si rozmyslet, jak má
taková přímka vypadat.

Dláža; gadurekvojtech@outlook.com

mailto:gadurekvojtech@outlook.com
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Téma 5 – Kombinatorika
Díl 4: Nepočítání a principy

Úvod
V minulém čísle jsme si ukázali, jak počítat některé základní věci v kombinatorice
nebo co je to kombinační číslo. V tomto díle na to navážeme a ukážeme si některé
zajímavé vlastnosti kombinačních čísel, poté si pomocí nich dokážeme binomickou
větu a nakonec si popíšeme dva důležité kombinatorické principy – Princip inkluze
a exkluze a Dirichletův princip. Stejně jako v minulém díle vás části vyznačené
kurzívou vyzývají k zamyšlení.

Kombinatorické nepočítání
Pokud si kombinační čísla správně zapíšeme, tak tvoří zajímavý útvar nazývaný
Pascalův trojúhelník zachycený na obrázku 1. Jeho konstrukce je jednoduchá. Jen
pozor, při tvorbě Pascalova trojúhelníku indexujeme od nuly. Každý jeho prvek
je kombinačním číslem

(
n
k

)
, kde n značí číslo řádku (n je tedy stejné pro prvky

ve stejném řádku) a k značí pozici v řádku (tedy k ∈ {0, 1, . . . , n}). Pascalův
trojúhelník je nekonečný, hodnotu n můžeme zvyšovat do nekonečna.

Konstrukce pomocí rozepisování a počítání binomických čísel je však lehce
zdlouhavá, existuje i jednodušší způsob. Všimněme si, že obě boční strany troj-
úhelníku jsou tvořeny samými jedničkami. Každé číslo, které má nad sebou dva
sousedy, je jejich součtem. Platí tedy

(
n+1
k+1

)
=
(
n
k

)
+
(

n
k+1

)
. Zkuste se zamyslet,

proč by měly tyto vlastnosti platit.

1

11

11

1 1

2

3 3

1 4 6 4 1 4 4 4 4 4
4

Obrázek 9: Pascalův trojúhelník
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První vlastnost plyne triviálně z toho, jak jsou kombinační čísla definovaná,
protože pokud ze skupiny o n prvcích vybíráme 0 nebo n prvků, tak máme pouze
jednu možnost, jak to udělat.

Druhá vlastnost se samozřejmě dá dokázat z definice, ale existuje i elegant-
nější způsob, jak ji dokázat. Podívejme se na kombinační číslo

(
n+1
k+1

)
. To nám

říká, kolika způsoby můžeme ze skupinky n+1 prvků (pro názornost lidí) vybrat
k + 1 prvků (lidí). Řekněme, že je ve skupině n+ 1 lidí přítomná Anička. Pokud
chceme vybrat skupinku k + 1 lidí tak buď v té skupince Anička je, nebo není.
Pokud Anička ve skupince je, tak k ní ze skupiny n lidí (skupina bez Aničky)
musíme vybrat k dalších osob (aby jich dohromady bylo k + 1, jak chceme), což
můžeme udělat

(
n
k

)
způsoby. Dále k tomu přičteme počet variant, kdy Anička ve

skupince nebude. Potom z n (opět skupina bez Aničky) musíme vybrat k + 1
lidí, což je

(
n

k+1

)
. Celkový počet možností, jak můžeme vybrat k + 1 z n+ 1 lidí,

je součtem počtu případů, kdy jeden určitý člen (Anička) ve skupině je a kdy
tam není:

(
n+1
k+1

)
=
(
n
k

)
+
(

n
k+1

)
. Podobný trik nám umožňuje například řešit tento

problém: Kuba má robota a 5 vylepšení, přičemž každé může, nebo nemusí pou-
žít. Kolik různých robotů může postavit? (Roboti jsou různí, pokud se liší alespoň
v 1 modifikaci.)

Řešení této úlohy je pouze sečíst všechna kombinační čísla, která mají „nahoře“
číslo 5. Pokud se na to podíváme v Pascalově trojúhelníku, tak se jedná o součet
6. řádku. Nemohli bychom si ušetřit práci s počítáním a vyjádřit tento součet
obecně? Čemu je roven součet všech

(
n
k

)
, kde za k postupně dosazujeme čísla od

0 do n (tedy jaká je hodnota
∑n

k=0

(
n
k

)
v závislosti na n?)

Snažíme se spočítat, kolik existuje různých podmnožin množiny o n (v ilu-
stračním případě 5) prvcích, protože vybíráme množiny všech velikostí, každou
právě jednou. Na rozdíl od předchozího příkladu se podíváme na všechny prvky
(ne pouze na jeden) a pro každý rozhodneme, jestli v podmnožině je, nebo není.
Jinými slovy si modifikace seřadíme a pro každou modifikaci robota rozhodneme,
jestli ji použijeme, nebo ne. To se dá převést na to, kolik existuje řetězců o n
znacích složených pouze z nul a jedniček, přičemž nula odpovídá tomu, že jsme
daný prvek nevybrali, a jednička tomu, že ano. Tento problém už jsme ale řešili
v minulém díle a víme, že jeho řešení je 2n a protože Kuba má 5 modifikací, tak
počet robotů, které může postavit je 25 = 32.

Binomická věta
Spoustu z vás se již ve škole jistě setkalo se vzorcem (a+ b)2 = a2 +2ab+ b2. My
si ukážeme, jak tento vzoreček pomocí kombinačních čísel zobecnit pro libovolné
n na (a+ b)n =

∑n
i=0

(
n
i

)
an−ibi. Z toho podle definice sumy dostaneme například

(a + b)3 = a3 + 3a2b + 3ab2 + b3 . Zkuste si rozmyslet, proč by tento vztah měl
platit. Klidně začněte s n = 3 a pak si tento vzoreček zkuste zobecnit.

Nejprve si (a+b)n rozepíšeme na (a+b)(a+b) . . . (a+b), kde se (a+b) vyskytuje
n-krát. Poté vidíme, že prvek an−ibi vznikne právě tehdy, když v i závorkách
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násobíme prvek b a ve zbylých prvek a, tedy pokud chceme jejich celkový počet,
tak vybíráme i závorek, ve kterých násobíme b, z celkových n závorek. Pokud
toto uděláme pro všechna i od 0 do n, dostaneme náš požadovaný vzoreček. Jiné
prvky roznásobením nevzniknou, protože a a b dohromady musíme vybrat vždy
n-krát. To platí díky tomu, že z každé závorky musí být v každém roznásobeném
prvku buď jedno a, nebo jedno b. Zajímavé je, že pokud dosadíme a = b = 1, tak
dostaneme alternativní důkaz toho, že 2n =

∑n
k=0

(
n
k

)
, neboli jak jsme si řekli

dříve jak vypočítat součet řádku n+ 1 v Pascalově trojúhelníku.
Princip inkluze a exkluze

Princip inkluze a exkluze (dále PIE) je jeden z nejčastěji používaných princi-
pů v kombinatorice. Umožňuje nám počítat se sjednoceními množin, s nimiž se
v kombinatorice počítá poměrně složitě, pomocí jejich průniků, se kterými se po-
čítá mnohem snadněji. Nejprve se podíváme na ilustrační případ: ve městě fungují
2 sportovní kluby. Fotbalový klub má 12 členů, tenisový klub 9. Přitom 3 fotba-
listé hrají i tenis. Město poté založilo ještě volejbalový klub. Přihlásilo se do něj
15 lidí, z toho 4 fotbalisté, 3 tenisté. Zároveň víme, že právě 1 člověk chodí do
všech tří klubů. Kolik osob celkem je členem nějakého klubu?

Nejprve sečteme počty členů sportovních klubů (tedy 12 + 9 + 15). To ale
jistě není odpověď, protože některé lidi jsme očividně započítali víckrát. Kon-
krétně každého člověka, který je právě ve dvou klubech zároveň jsme započítali
dvakrát, každého, který je ve třech třikrát atd. Tak zkusíme odečíst počet lidí,
kteří jsou ve dvou klubech zároveň (tedy 3+4+3). Nyní nám sedí počty lidí, kte-
ří jsou právě v jednom klubu a těch, kteří jsou právě ve dvou. Tedy už musíme
opravit pouze počet lidí, kteří jsou členy všech tří. Ty jsme započítali třikrát
v prvním součtu a poté jsme je odečetli také třikrát (protože jsou součástí tří
dvojic klubů) a tedy už nám stačí pouze jejich počet přičíst a dostaneme výsledek
12 + 9 + 15 − 3 − 4 − 3 + 1 = 27. U tohoto postupu jsme rovnou přišli na to,
jak spočítat velikost sjednocení tří množin – tedy kolik prvků se vyskytuje ale-
spoň v jedné množině (neboli v našem případě kolik lidí chodí do alespoň jednoho
ze tří klubů). Toho jsme dosáhli jenom pomocí průniků (neboli pomocí toho, že
jsme věděli, kolik lidí chodí zároveň do libovolných z klubů) tak, že jsme nejprve
přičetli průniky velikosti 1 (neboli kolik lidí chodí do každého klubu), poté ode-
četli průniky velikosti 2 (tedy pro každou dvojici klubů jsme odečetli, kolik lidí
chodí do obou z nich) a nakonec jsme přičetli průniky velikosti 3 (neboli počet
lidí, kteří chodí do všech tří klubů zároveň). Princip inkluze a exkluze nám říká,
že tímto přičítáním lichých průniků a odečítáním sudých průniků jsme schopni
spočítat sjednocení libovolného počtu množin, ne jen 3. Můžete si rozmyslet, že
toto tvrzení obdobně platí i pro 1 a 2 množiny.

Na Obrázku 2 níže je situace z příkladu zachycena. Každé písmeno v názvu
odpovídá jednomu klubu a mi známe velikosti částí, které jsou obarvené alespoň
1, 2 a 3 barvami. Tedy pro každou kombinaci znaků známe velikost častí, které
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obsahují v názvu alespoň tyto znaky (například pro kombinaci A a B známe
velikost AB +ABC) a nás zajímá velikost obarvené části obrázku.

A

B

C

AB

AC

BC

ABC

Obrázek 10: Princip inkluze a exkluze pro tři množiny

Pro důkaz PIE si dokážeme následující pomocné tvrzení, které budeme po-
třebovat:

∑n
k=0(−1)k

(
n
k

)
= 0, neboli počet sudých a lichých podmnožin (tzn.

podmnožin se sudým a lichým počtem prvků) nějaké množiny o n prvcích je stej-
ný (nesmíme zapomenout na podmnožinu velikosti 0, která je sudá). Zkuste si
toto tvrzení dokázat sami.

Vezmeme si všechny liché podmnožiny nějaké množiny o n prvcích a nějaký
konkrétní prvek a této množiny. Nyní pro každou podmnožinu vezmeme prvek a
a pokud v této podmnožině je, tak ho z ní odebereme, a pokud v ní není, tak
ho do ní přidáme. Tím pro každou lichou podmnožinu dostaneme unikátní sudou
podmnožinu. To platí díky tomu, že pokud se dvě liché podmnožiny liší něčím
jiným, než tím, že obsahují/neobsahují a, tak se z nich nemůže stát ta stejná sudá
podmnožina a pokud se liší pouze obsahem a, tak jedna z nich není lichá, protože
dvě čísla lišící se o 1 nemůžou být obě lichá. Sudých podmnožin tedy musí být
alespoň tolik, jako lichých. Stejnou úvahu můžeme provést i pro sudé podmnožiny,
z čehož získáme, že počet sudých a lichých podmnožin je stejný.

A tím se konečně dostáváme k PIE. Ten zní následovně: Máme nějaký počet
množin m, které se mohou protínat (neboli některé prvky můžou být ve více
množinách). Pro něj vezmeme počet prvků ve všech průnicích lichých podmnožin
a odečteme počet prvků v průnicích sudých podmnožin a označíme si tuto sumu
S. Pak S je počet prvků ve sjednocení těchto množin. Zkuste si rozmyslet důkaz
PIE (nápověda: podívejte se na jeden konkrétní prvek).

Jak jsme vám napověděli, podíváme se na jeden konkrétní prvek p. Řekněme,
že je součástí n z m množin. Zajímá nás, kolikrát se p vyskytuje v průniku k ≥ 1
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množin. Aby byl p v průniku k množin, tak se musí vyskytovat v každé z nich
a tedy každá z nich je jedna z n množin, kterých je p součástí. Z toho počet
jeho výskytů v průnicích velikosti k dostaneme jednoduše jako

(
n
k

)
. Z toho si

můžeme vyjádřit S jako
∑n

k=1(−1)k−1
(
n
k

)
. Abychom dokázali PIE, tak toto musí

byt rovno 1, protože každý prvek je v průniku množin započítán právě jednou.
Pokud si vezmeme naše pomocné tvrzení a vše v sumě, kromě i = 0, přesuneme
na druhou stranu rovnice, tak dostaneme:

n∑
k=0

(−1)k
(
n

k

)
= 0

(
n

0

)
=

n∑
k=1

(−1)k−1

(
n

k

)

1 =

n∑
k=1

(−1)k−1

(
n

k

)
.

Protože bylo p zvoleno libovolně, tak to platí pro všechny prvky těchto množin,
čímž jsme dokázali PIE.

Dirichletův princip
Jako takovou třešničku na dortu si ukážeme ještě relativně jednoduchý, ale velice
užitečný princip – Dirichletův princip neboli princip holubníku. Ten nám říká,
kolik musíme mít holubů, aby se v alespoň jednom z m holubníků nacházelo ale-
spoň n holubů. Nejprve se podíváme na to kolik holubů je potřeba, aby v alespoň
jednom z 8 holubníků bylo alespoň 7 holubů a pak si tento příklad vyřešíme obec-
ně. Zkuste si rozmyslet, kolik nejméně holubů potřebujeme. Začněte s konkrétními
čísly a pak odvoďte obecnou závislost.

Vidíme, že pokud máme 8 ·6 holubů, tak to těsně nevyjde, protože do každého
holubníku dáme 6 holubů, ale zároveň pokud jednoho přidáme, tak už ho nemáme
kam dát tak, aby jsme nesplnili podmínku. Tedy celkově nám stačí 8 · 6 + 1 = 49
holubů. Obecně odpověď pro m holubníků a n holubů je m(n − 1) + 1. Vidíme,
že m(n − 1) jistě nestačí, protože v každém holubníku může být n − 1 holubů
a naše podmínka není splněná. Teď ještě dokázat, že m(n − 1) + 1 stačí. Pro
spor předpokládáme, že v žádném holubníku není alespoň n holubů. Potom však
v každém holubníku je maximálně n−1 holubů, a tedy celkový počet je maximálně
m(n−1), což je spor. Tedym(n−1)+1 holubů stačí, aby byla podmínka splněna.

Úloha 4.1 [2b]: Máme tabulku 5 × 5 a dva lidé hrají hru. Pravidelně se střídají
v tazích. Hráč na tahu vždy obarví jedno políčko tabulky svojí barvou. Pokud hráč
svojí barvou zvládne obarvit 4 vrcholy nějakého obdélníku, tak vyhrál a hra končí.
Dokažte, že hra nemůže skončit remízou, čili jeden hráč jistě vyhraje.
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Úloha 4.2 [2b]: Mějme 2 červené kuličky, 3 modré a 3 zelené. Kuličky stejné
barvy jsou navzájem nerozlišitelné. Spočítejte, kolika způsoby je lze seřadit tak, aby
vedle sebe nikdy nebyly všechny kuličky od jedné barvy (tudíž mezi první a poslední
kuličkou jedné barvy v řadě musí být alespoň jedna kulička jiné barvy).

Úloha 4.3 [3b]: Z čísel 1, 2, . . . , 1000 vyškrtáme všechny násobky 3, 5, 7 a 42.
Kolik čísel nám zůstane?

Úloha 4.4 [3b]: Určete počet cest délky a + b z levého dolního rohu do pravého
horního v mřížce a× b.

Úloha 4.5 [3b]: Rozkladem čísla n délky k ≥ 1 rozumíme konečnou nerostoucí
posloupnost přirozených čísel a1, . . . , ak splňující a1 + · · · + ak = n. Dokažte, že
počet všech rozkladů čísla n je roven počtu rozkladů čísla 2n délky n.

Lukáš, Terka; troj.lukas@gmail.com
odevzdávejte do odevzdávátka

Řešení 3. dílu
Úloha 3.1

Zadání:
Kolik existuje pěticiferných hesel, která obsahují právě 3 jedničky? (Hesla obsahují
pouze cifry a můžou začínat na 0.)

Řešení:
Nejprve vybereme 3 cifry, které budou jedničky a poté u ostatních čísel vybereme
jedno ze zbylých 9 cifer a tím dostaneme výsledek

(
5
3

)
· 92.

Úloha 3.2
Zadání:
Kolik let v minulém tisíciletí mělo rostoucí posloupnost cifer? (Tedy kolik let tvaru
1xyz splňuje 1 < x < y < z.)

Řešení:
Stačí nám pouze vybrat 3 z čísel od 2 do 9 a jejich pořadí je jednoznačně určené,
takže výsledek je

(
8
3

)
.

Úloha 3.3
Zadání:
Máme 10 speciálních znaků, 10 číslic a 26 písmen. Kolik různých hesel délky
8 můžeme vytvořit tak, aby obsahovala právě 1 speciální znak a právě 2 číslice?

mailto:troj.lukas@gmail.com
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Řešení:
Nejprve vybereme místo, kam umístíme speciální znak, vynásobíme počtem mož-
ných speciálních znaků na tomto místě, poté ze zbylých míst vybereme, kam
umístíme dvě číslice, pak opět vynásobíme počtem možných číslic pro obě tato
místa a nakonec vynásobíme pro každé zbylé místo počtem možných písmen. Tedy
dostaneme

(
8
1

)
· 10 ·

(
7
2

)
· 102 · 265 =

(
8
1

)
·
(
7
2

)
· 103 · 265.

Úloha 3.4
Zadání:
Máme 5 modrých, 10 zelených a 10 oranžových míčků a vybereme si 10 z nich.
Kolik máme možností, jak bude výsledná skupina vypadat?

Řešení:
Spočítáme, jako kdybychom měli všech barev neomezeně, a poté odečteme počet
všech případů, kdy jsme vybrali víc než 5 modrých (tedy předpokládáme, že
6 modrých již máme vybraných a poté vybíráme ze 3 barev pro zbylé 4 míčky).
V obou případech se jedná o kombinace s opakováním a ty z minulého dílu víme,
že spočítáme takto:

(
12
2

)
−
(
6
2

)
.

Úloha 3.5
Zadání:
Kolika způsoby jde rozdělit 20 různých knih do 5 regálů? (V každém regálu nám
záleží na pořadí knih.)

Řešení:
Nejprve si knihy rozdělíme do regálů pomocí metody přepážek, kterou jsme po-
užívali na počítání kombinací s opakováním, čímž knihy rozdělíme do regálů tak,
že každá přepážka symbolizuje přechod do nižšího regálu. Poté když knihy čteme
„jako písmena v knize“ tedy zprava zvrchu, tak rozdělení do přepážek nemění je-
jich pořadí. Poté už je jenom musíme v tomto pořadí uspořádat a tím dostaneme
výsledek. Tedy výsledek je 20! ·

(
24
4

)
.
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Téma 6 – LISP
Díl 2: Lambdy a makra

Posledně jsme se seznámili s základními konstrukty jazyka Lisp. V tomto díle si
vysvětlíme, jak funguje volání funkcí, a napíšeme si vlastní makro. Nejprve ale
musíme napravit křivdu z minula.

Pro úplnost nejprve uvedeme chybný příklad a pak ho opravíme.

(defun square-only-small (n)
(if (< n 100) (* n n) (

(print "wow, you are already pretty big!")
n

))
)

Problém je v s-expression ((print "wow, you are already pretty big!") n). Kdy-
bychom chtěli vypsat text a vrátit hodnotu, potřebujeme použít progn.

(defun square-only-small (n)
(if (< n 100) (* n n) (progn

(print "wow, you are already pretty big!")
n

))
)

Speciální funkce progn vyhodnotí všechny své argumenty a vrátí hodnotu posled-
ního.

Case sensitivity Jistě jste si všimli, že ať už napíšete (print 'a) či (print 'A),
Lisp vypíše v obou případech A. To je proto, že Lisp automaticky převádí všech-
ny jména atomů na uppercase. Přesto je technicky vzato case sensitive, a dokáže
rozeznat velká a malá písmena. V praxi se však chová jako case insensitive ja-
zyk. Budeme se držet konvence, že důležité konstanty, jako jsou T a NIL budeme
psát velkými písmeny. Navíc budeme proměnné a funkce, které definujeme my,
pojmenovávat českými názvy.

Funkce jako parametr
Kdybychom psali něco jako kalkulačku, mohli bychom napsat následující funkci:

(defun vyhodnot-operator (operator leva prava)
(cond

((string= operator "+") (+ leva prava))
((string= operator "-") (- leva prava))
((string= operator "*") (* leva prava))
((string= operator "/") (/ leva prava))

)
)
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Funkce cond (zkratka z conditional) je zobecněním if. Umožňuje zapsat více
podmínek za sebou přehledněji než vnořené if. Bere libovolný počet seznamů
(větví). V každé větvi se vyhodnotí první prvek jako podmínka. Pokud je pravdivá
(není NIL), vyhodnotí se zbytek výrazů v dané větvi a vrátí se hodnota toho
posledního. Pokud podmínka neplatí, jde se na další větev. Pokud neplatí žádná
z podmínek, vrátí se hodnota NIL.

Všimněte si také, že pro porovnání operátoru používáme string= a ne =.
V Lispu (konkrétně v Common Lispu) operátor = slouží výhradně k porovná-
vání čísel. Pro porovnávání řetězců musíme použít string=. Kdybychom použili
=, dostali bychom chybu, že operand není číslo.

Snadno si všimnete, že na každém řádku se v podstatě všechen kód opakuje –
jediná věc, která se mění, je operátor. Zkusíme napsat „chytřejší“ verzi:

(defun operator-to-funkce (operator)
(let ((retezec (list "+" "-" "*" "/"))

(funkce (list #'+ #'- #'* #'/)))
(loop for i from 0 to 3 do

(if (string= (nth i retezec) operator)
(return-from operator-to-funkce (nth i funkce))

)
)

)
)
(defun vyhodnot-operator (operator leva prava)

((operator-to-funkce operator) leva prava)
)

Funkce operator-to-funkce nám převede řetězec "+" na funkci +, obdobně i pro
ostatní operátory. Z minula známe quote, neboli apostrof ', který vytvoří objekt
typu symbol. Zde jsme použili operátor function, tedy #', který vytvoří objekt
typu function, o čemž se můžete přesvědčit pomocí type-of.

Bohužel ani to, že operator-to-funkce vrací objekt typu function, nepomůže.
Když se Lisp pokusí vyhodnotit výraz v těle vyhodnot-operator, pokusí se vyložit
si s-expression (operator-to-funkce operator) jako funkci. Kdyby ji vyhodnotil,
dostal by funkci; to však neudělá, a místo toho nám hodí error. Abychom funkci
zavolali, musíme použít funkci funcall.

(defun vyhodnot-operator (operator leva prava)
(funcall (operator-to-funkce operator) leva prava)

)

Nejprve se vyhodnotí všechny parametry funcall, operator-to-funkce nám vrátí
funkci a ta se zavolá s parametry leva a prava.

Poznámka: Funkci funcall můžeme v prvním parametru zadat i symbol, který
pojmenovává funkci. Operátor #' používáme zejména proto, že to tak je tradiční,
o něco rychlejší a upozorňuje na to, že se jedná o funkci. Upravená verze funkce
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operator-to-funkce by obsahovala ' místo #' a vracela by symbol místo funkce.
vyhodnot-operator by se chovala stejně, jen by do funcall předávala symbol.

Lisp-1 vs. Lisp-2 Jak víme, Lisp má mnoho variant. Common Lisp, který po-
užíváme, je takzvaný Lisp-2, což znamená, že používá (minimálně) dva oddělené
jmenné prostory: jeden pro funkce a druhý pro „běžné“ hodnoty (například pro-
měnné). Jinak řečeno, symbol může ve stejnou dobu reprezentovat jak proměnnou,
tak funkci – například můžete mít proměnnou s názvem foo a zároveň funkci foo,
které spolu nijak nekolidují. Tomu se říká dvouprostorová architektura (Lisp-2).

Existují také Lispy takzvaného typu Lisp-1 (například Scheme), které mají jen
jeden společný jmenný prostor: jméno foo může reprezentovat buď funkci, nebo
hodnotu, ale ne obojí najednou. Jednoduše řečeno, v Lisp-1 má každý symbol
právě jednu hodnotu, ať už je to funkce, číslo nebo něco jiného; v Lisp-2 má symbol
„slot“ pro hodnotu a „slot“ pro funkci zvlášť. Uvedeme příklad kódu demonstrující
oddělený jmenný prostor funkcí a hodnot Common Lispu:

(let ((foo 42)) ; a variable FOO
(flet ((foo (n) (+ n 107))) ; a function FOO

(foo foo))) ; calling function FOO with the value of the variable FOO

Lambda funkce Občas se stane, že potřebujeme funkci jen na jednom místě,
typicky jako parametr pro jinou funkci. Vymýšlet pro ni unikátní jméno pomocí
defun je zdlouhavé a znepřehledňuje to kód. Pro tyto účely existují tzv. anonymní
funkce, v Lispu nazývané lambda funkce.

Syntaxe je stejná jako u pojmenovaných funkcí, pouze bez jména:

(lambda (x) (- 1 (* x x)))
(lambda (x y) (* x y))

Následný výraz vrátí funkci, která umocňuje svůj argument na druhou. Protože
jde o objekt typu function, můžeme ho (stejně jako pojmenované funkce) předat
funkci funcall:

(funcall (lambda (x) (* x x)) 5) ; 25

Lambda funkce nejčastěji uvidíte ve spojení s funkcemi pro zpracování sezna-
mů, jako je mapcar (aplikuje funkci na každý prvek seznamu) nebo remove-if-not
(odstraní prvky seznamu, které nevyhovují dané podmínce):

(mapcar (lambda (x) (+ x 10)) '(1 2 3)) ; (11 12 13)
(remove-if-not (lambda (x) (evenp x)) '(1 2 3 4 5)) ; (2 4)
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Proč lambda? Název pochází z lambda kalkulu, který ve 30. letech 20. sto-
letí zavedl Alonzo Church. Traduje se, že Church původně používal stříšku nad
proměnnou (např. x̂). Tu přesunul před proměnnou (∧x), aby se jeho nová nota-
ce nepletla s předchozími použití stříšky. Symbol lambda, λ, si Church nakonec
vybral proto, že se snáze tiskne.

Pokročilé předávání argumentů
Zatím umíme definovat pouze funkce, které vyžadují přesný počet argumentů. Po-
kud definujeme funkci (defun f (a b) ...), musíme ji volat se dvěma argumenty.
Lisp naštěstí nabízí bohatou syntaxi pro flexibilnější definice parametrů pomocí
speciálních klíčových slov začínajících znakem & (takzvaná lambda list keywords,
pro více informací viz Lisp Docs10).

&optional Umožňuje definovat nepovinné parametry. Ty se uvádějí v sezna-
mu za klíčovým slovem &optional. Pokud při volání funkce nejsou zadány, mají
hodnotu NIL, případně můžeme specifikovat vlastní výchozí hodnotu.

(defun pozdrav (jmeno &optional (uvodni-slovo "Ahoj"))
(format T "~a, ~a!~%" uvodni-slovo jmeno))

(pozdrav "Petr") ; => Ahoj, Petr!
(pozdrav "Pavel" "Cau") ; => Cau, Pavel!

&rest Slouží pro funkce s proměnným počtem argumentů. Všechny „zbylé“ ar-
gumenty, které se nevešly do povinných ani volitelných, se zabalí do seznamu.

(defun scitani (&rest cisla)
(apply #'+ cisla)) ; apply zavola funkci na seznam argumentu

(scitani 1 2 3 4) ; => 10

&key Klíčové argumenty (keyword arguments) umožňují předávat parametry
podle jména, nikoliv podle pozice. To je velmi užitečné u funkcí s mnoha nasta-
veními. Voláme je pomocí symbolů začínajících dvojtečkou (tzv. keywords).

(defun upec-dort (&key (velikost "maly") (napln "cokolada"))
(list velikost napln))

(upec-dort :napln "jahody") ; => ("maly" "jahody")
(upec-dort :velikost "velky" :napln "vanilka")

Existují i další klíčová slova, například &aux pro pomocné lokální proměnné,
ale ta se používají méně často.

10https://lisp-docs.github.io/cl-language-reference/chap-3/d-e-lambda-lists

https://lisp-docs.github.io/cl-language-reference/chap-3/d-e-lambda-lists
https://lisp-docs.github.io/cl-language-reference/chap-3/d-e-lambda-lists
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Makra
Ačkoli jsme o nich zatím moc nemluvili, makra jsou klíčovou součástí Lispu. Makra
nám umožňují definovat si vlastní syntaktické konstrukce, které vypadají, jako by
byly součástí jazyka. Oproti makrům v jiných jazycích, která typicky mají vlastní
syntaxi, makra v Lispu jsou vlastně jen funkce, které pracují se s-expressions.

Představte si, že bychom chtěli napsat vlastní if. Zkusíme použít cond pro
implementaci:

(defun pokud (podminka pravda nepravda)
(cond (podminka pravda)

(T nepravda)))

Vzpomeneme si, že symbol T reprezentuje pravdivou hodnotu. Pokud je tedy pod-
mínka pravdivá, vyhodnotí se první větev, jinak se vyhodnotí druhá větev.

Problém je v tom, že funkce v Lispu (stejně jako ve většině jazyků) nejdřív
(než se zavolají) vyhodnotí své argumenty. Pokud bychom zavolali (pokud (= 1 1)
(print "ano") (print "ne")), vypsalo by se „ano“ i „ne“, protože se oba printy

vyhodnotí ještě před zavoláním funkce. Makra tento problém řeší tím, že se vyhod-
nocují v době překladu (makroexpanze) a jejich argumenty jsou nevyhodnocené
kusy kódu.

Quoting a Backquoting Abychom mohli v makrech snadno generovat kód
(což jsou v Lispu seznamy), používáme speciální notaci. Obyčejný quote (') už
známe – bere vše doslovně.

(defparameter *jmeno* "Pepa")
'(ahoj *jmeno*) ; => (AHOJ *JMENO*)

Často ale chceme vytvořit seznam, který je zčásti konstantní, ale na některá
místa chceme vložit hodnotu proměnné. K tomu slouží backquote (`, backtick)
spolu s operátory unquote (,) a unquote-splicing (,@).

• ` (backtick/backquote): Začíná „šablonu“ seznamu. Chová se jako quote,
dokud nenarazí na čárku.

• , (comma/unquote): Říká „tady přestaň citovat a vyhodnoť tento výraz“.
Výsledek vloží do seznamu.

• ,@ (comma-at/splice): Vyhodnotí výraz (který musí vrátit seznam) a jeho
prvky „vyleje“ do okolního seznamu (odstraní vnější závorky).

Na české QWERTZ klávesnici lze backtick napsat pomocí klávesové zkratky
AltGr+ý (ekvivalentně zapsáno AltGr+7), která dá backtick nad další znak, který
napíšeme. Když hned po zmíněné klávesové zkratce stiskneme mezerník, napíše se
samotný backtick. Na anglické klávesnici se nachází na samostatné klávese vlevo
nahoře pod klávesou Esc.
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Příklady:

(defparameter *a* 10)
(defparameter *l* '(1 2 3))

`(seznam s a je ,*a*) ; => (SEZNAM S A JE 10)
`(seznam s l je ,*l*) ; => (SEZNAM S L JE (1 2 3))
`(seznam spojeny s l ,@*l*) ; => (SEZNAM SPOJENY S L 1 2 3)

Nyní můžeme napsat funkční makro pro pokud. Všimněte si použití defmacro:

(defmacro pokud (podminka pravda nepravda)
`(cond (,podminka ,pravda)

(T ,nepravda)))

Když Lisp narazí na (pokud (= 1 1) (print "ano") (print "ne")), nejprve zavolá
naše makro. To vrátí seznam: (cond ((= 1 1) (print "ano")) (T (print "ne"))).
Tento seznam pak Lisp spustí. Díky tomu se cond postará o to, že se provede jen
ta správná větev.

Další příklady maker Kdybychom si přáli vědět, která z větví se skutečně
vyhodnotila, můžeme si napsat makro hlasite-pokud:

(defmacro hlasite-pokud (podminka pravda nepravda)
`(cond

(,podminka (progn
(format T "Podminka ~a byla pravdiva~%" ',podminka)
,pravda)

)
(T (progn
(format T "Podminka ~a byla nepravdiva~%" ',podminka)
,nepravda)

)
)

)

Kombinace quote a unquote (',) může znít absurdně – proč místo ',podminka
prostě nenapíšeme podminka? Problém by byl, že jsme pořád v prostředí back-
quote, a Lisp by do podminka nedosadil naší podmínku, ale nechal by tam symbol
podminka. Ten ale existuje jen v době překladu (jako argument makra), takže by
program spadl na chybě „variable PODMINKA is unbound“. Pokud bychom použili
jen unquote (,podminka), vložil by se sice kód podmínky, ale ten by se při běhu
vyhodnotil a my bychom vypsali výsledek (např. T) místo původního výrazu.

Dále si zkusme napsat makro repeat, které n-krát zopakuje zadaný kód.

(defmacro repeat (n &body telo)
`(loop for i from 1 to ,n do

,@telo))
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Všimněte si klíčového slova &body. Dělá to samé, co &rest, se kterým jsme se
setkali u funkcí, a je to taky lambda list keyword. V obou případech dostaneme
seznam argumentů. Díky unquote-splicing (,@) pak tento seznam vložíme do těla
smyčky. Použití:

(repeat 4
(print "ahoj")
(print "svete"))

; =>
; (loop for i from 1 to 4 do
; (print "ahoj")
; (print "svete"))

Nakonec uvedeme debug-print, které vypíše výraz a jeho hodnotu. Zamyslete
se, jak by se dalo zkombinovat s makrem hlasite-pokud.

(defmacro debug-print (promenna)
`(format T "Hodnota ~a je ~a~%" ',promenna ,promenna))

;(debug-print (+ 1 2))
; => (format T "Hodnota ~a je ~a~%" '(+ 1 2) (+ 1 2))

Pokročilá práce se vstupem makra Zatím jsme všechny vstupy makra pouze
opatrně předávali do unquote a unquote-splicing. To ale není všechno, co se s nimi
dá dělat – vstupy makra jsou normální s-expressions, což jsou seznamy, a s těmi
umíme pracovat.

V makru hlasite-vyhodnot postupně zkonstruujeme tělo progn, které bude vy-
pisovat, kolik výrazů se spustí a jakou mají délku. Použité funkce jsou vysvětleny
na další stránce.

(defun delka (vyraz) (if (atom vyraz) 1 (length vyraz)))
(defun ceska-koncovka (n) (cond
((= n 0) "u") ((= n 1) "") ((< n 5) "y") (T "u")

))
(defmacro hlasite-vyhodnot(&body telo)
(let ((pocet (length telo))

(nove-telo '()))
(progn
(dolist (vyraz telo)
(push `(format T "Vyraz delky ~a~%" ,(delka vyraz)) nove-telo)
(push vyraz nove-telo)

)
`(progn
(format T "Spoustim ~a vyraz~a~%" ,pocet ,(ceska-koncovka pocet))
,@(reverse nove-telo)

)
)

)
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)
; Zkuste:
; (macroexpand '(hlasite-vyhodnot
; (print "ahoj")
; (format T "svete, 1+2= ~a" (+ 1 2))
; ))

Funkce atom je predikát, který vrací pravdu, pokud daná s-expression není
složená (je to číslo, symbol, řetězec nebo NIL). Umožňuje nám rozlišit atomy od
seznamů s-expressions. Makro dolist iteruje přes prvky seznamu. V každém prů-
chodu nastaví první argument (zde vyraz) na aktuální prvek seznamu (zde body)
a provede tělo cyklu. Makro push vloží nový prvek na začátek seznamu uloženého
v proměnné (zde nove-telo). Jde o destruktivní operaci, která změní hodnotu
dané proměnné. Funkce macroexpand slouží k ladění maker. Přijímá výraz (zde
volání makra) a vrátí jeho expandovanou podobu.

K procvičení můžete makro zkusit upravit tak, aby řetězce, které vypisuje,
zformátovalo při kompilaci. V jeho výstupu by pak nebylo format, ale pouze
print.

Úlohy
Ve veřejném Github repozitáři https://github.com/koskja/mam-lisp najdete
soubor zadani2.lisp s vyplnitelnými šablonami, do kterých můžete vepsat váš
kód. Na konci souboru jsou testy, které ověří, že se kód chová správně na některých
základních vstupech.

Pokud budete mít problémy se souborem (třeba vám bude připadat, že testy
netestují, co by měly testovat, nebo jsou nějak jinak rozbité), napište na M&M
Discord do channelu lisp nebo na email jan.koska@email.cz.

Do odevzdávátka odevzdejte soubor zadani2.lisp vyplněný vaším kódem.
Úloha 4.1 [1b]: Implementujte funkci range podobně jako v Pythonu.

Úloha 4.2 [1b]: Vygenerujte seznam třetích mocnin všech lichých čísel od 1 do
100. Použijte funkce mapcar, remove-if-not a range.

Úloha 4.3 [2b]: Implementujte vlastní varianty funkcí length, map, filter,
left-fold, right-fold11 pro seznamy.

Úloha 4.4 [2b]: Implementujte makro while.

Úloha 4.5 [3b]: Implementujte makro replace-atom, které ve svém těle nahradí
všechny výskyty daného atomu za jiný atom.

Problém 4.6: Vymyslete nějaké makro a vysvětlete, v jaké situaci byste ho pou-
žili.

Jan Koška; jan.koska@email.cz
odevzdávejte do odevzdávátka

11https://en.wikipedia.org/wiki/Fold_(higher-order_function)

https://github.com/koskja/mam-lisp
mailto:jan.koska@email.cz
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
mailto:jan.koska@email.cz
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
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Téma 26 – Šifrování
Šifry od řešitelů

Šifrovací témátko je zpět a opět se radujeme nad spoustou rozmanitých šifer,
které nám od vás přišly. Rozhodly jsme se proto o tuto radost podělit a otisknout
některé vybrané kousky i vám k luštění i k inspiraci pro další tvorbu (problém
na vymýšlení šifer už ale uzavíráme). Opět připomínáme, aby autoři šifer řešení
svých šifer znovu neposílali. A teď hurá do šifrování!

Úloha 4.1 [12b]: Vyřešte následující šifry. Zajímá nás nejen heslo, ale i princip
řešení, a jak jste na něj přišli.

(a) Šifra od Mgr.MM Petra Bartáka:
Daniela odbouraly blbosti.
Ryj!
Emil spí.
I. sepsaná práce
Obr cupuje inauguraci.
Tolerance elipsy je sedmiprocentní.
abstraktní mat
O hloupém Lobotomovi
Adiabaticky stlačil kost yetti.

(b) Šifra Karty od Mgr.MM Alexandry Gauchet:
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(c) Šifra od Mgr.MM Natálie Jochové:
PeS Péťa se nějakým způsobem vyskytl v Indii. Moc se mu tam nelíbilo,
a tak se vydal jinam. Nejprve šel dva dny na sever a pak tři dny na východ
– a heleme se, skončil v Japonsku. Tam se mu moooc líbilo a udělal si tu
fotečku s horou Fudži.

V Japonsku se mu líbilo tak moc, že se vydal ještě na ostrov Hokkaidó, který
je jeden den cesty na sever od jeho hotelu. Jakmile tam dorazil, ochutnal
místní dýňovou polévku a nezapomněl se tímto kulinářským zážitkem pochlu-
bit na instagramu.

Když pak večer seděl na pláži, dumal nad tím, co se asi skrývá na druhé straně
téhle velké louže. A tak se tam druhý den vydal na výlet. Během tříhodinové
cesty lodí na západ si užíval mořského vzdoušku kolem. Když dorazil, zjistil,
že je v Rusku. To ho velmi vylekalo, a pro jistotu poslal kamarádům svoji
fotku, kdyby ho už náhodou nikdy neuviděli.

Z Ruska rychle odjel zpátky lodí tam, odkud ráno přijel – na ostrov Hokkai-
dó. Tam si mohl oddychnout a poslat kamarádům fotku jako důkaz, že se ve
zdraví vrátil do civilizace. Ze všeho toho cestování začal být už Péťa unavený,
a tak se vydal zpátky domů. Cesta na letiště na jihu mu zabrala čtyři hodiny.
Pak už se jen proletěl nějakých jedenáct hodin na západ a byl zpátky doma.
Jako první si zašel do svojí oblíbené hospody na jedno správně vychlazený.
Na jeho instagramu se večer objevila fotečka s popiskem #jedineplzen.

(d) Šifra Projížďka autem od Dr.MM Barbory Salajové:
Stalo se vám někdy, že jste si od někoho půjčili auto, on vám předal klíčky
a vy jste nastoupili v domnění, že hned odjedete, ale vzápětí jste zjistili,
že nevíte, jak zařadit zpátečku? Vyzkoušeli jste všechny možnosti, dopředu,
dolů, dozadu… ale ani jedna z nich nechtěla fungovat? Po několika minutách
tedy zvedáte telefon a voláte kamarádovi: „Promiň, že tě ruším, ale jak že se
řadí zpátečka?“ Ten vám konečně poradí správný způsob: doleva a dozadu,
zařadíte, a konečně jedete do vysněné destinace.

Přesně toto se mi nedávno stalo. Auto jsem si sice nepůjčovala, ale nevěděla
jsem si rady, jak začít couvat. Způsob řazení mě lehce překvapil, ale což, ne
všechny manuály to mají stejně. Po úspěšném zařazení zpátečky vyjíždím na
silnici do vysněné destinace. Nejrychlejší cesta vede přes dálnici, na tu je
to kousek, ale snad nepřejedu nájezd. V připojovacím pruhu se rozjíždím už
na čtyřku a zrychluju pomalu až na nejvyšší rychlostní stupeň, pětku. Stále
se na to řazení musím hrozně soustředit.
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Jedu si to hezky 130 po dálnici, na předjíždění se občas hodí podřadit třeba
na čtyřku, ale jinak pokračuju stálou rychlostí. Jak se kochám výhledy na
hrádek v okolí, tak se pomalu blížím k malé koloně aut. Docela nečekaně zpo-
maluji, takže se spojkou řadím rovnou trojku, protože nic vyššího již nedává
smysl. Kolona jede pomaličku vpřed a zanedlouho zjišťuje, že je způsobena
silniční prací, opět. V jednu chvíli dokonce zastavíme úplně. Rozjíždět se je
potřeba samozřejmě na jedničku, ale vypadá to, že dál už to pojede, takže
můžu i dvojku.

Tak, to bylo příliš naivní. Kolona zase zastavila a já se musím zase rozjíždět,
zase jednička. Pomalu se ploužím společně s ostatními, ale aspoň mi hrají
fajn písničky. Vypadá to nadějně a myslím, že teď už to pojede. Už mám
dvojku. Super. Vypadá to, že se vše rozjíždí a už zase jedou všichni stovkou.

No nic, dostávám trochu hlad, a tak asi zastavím na nejbližší benzínové
pumpě. Sjíždím, zastavuji na parkovišti a jdu si něco koupit. Nastupuju
zpět a zase to rozjíždění, ach jo, doufám, že se rozjedu bez problému, protože
v tomhle autě motor občas trochu zlobí. Zpátečka, tak, a teď jednička a jedem!

Ale ne, tak ještě nejedem, musím si ještě trochu couvnout, protože jinak do-
jedu maximálně do auta před sebou. Takže, zase zpátečka a povedlo se. Zpátky
na dálnici, hezky se rozjet se čtyřkou stejně rychle jako ostatní a můžeme
frčet.

Už se blížím ke svému sjezdu a vypadá to na prudkou zatáčku. Raději podřídí-
me až na trojku, abych neskončila ve svodidlech. Tak, pohoda, dále pokračuju
po větší rovné silnici, kde se dá jet rychle, takže zase čtyřka. I z této velké
silnice zanedlouho sjíždím a blížím se k chatě. Tak, jsem tu, už jen zacouvat
na místo, zpátečka, a je to. Nakonec to jelo hezky.

(e) Šifra od Mgr.MM Svatavy Šimečkové:
Mám nápad na šifru.
On mě napadl celkem nedávno.
Rým určitě používat nebudu.
Soud šifer by z toho nebyl nadšený.
Ér, kde byl rým populární, už mají řešitelé plné zuby.
Ód bych na rým mnoho nedostala.
Vím, že důležitá budou naopak první slova.
Au, jasně že si zrovna nakopnu palec.
Já mám fakt zatracenou smůlu.
Ta šifra mi ale přijde docela dobrá.
Jen doufám, že se bude líbit i řešitelům.
Jsou fakt moc šikovní.
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Ti tu šifru určitě vyluští.
Kéž by se jim i líbila.
Jo, taky doufám, že v tom nebudou hledat nic složitého.
Vždyť většina toho textu vůbec k ničemu není.
Čtou ho vůbec?
I když bych jim tam vlastně mohla dát nějakou nápovědu.
No, ale nebude to pak až moc zřejmé?
Tou nápovědou bych to taky mohla celé zkazit.
Tak udělám to?
No, asi jo.
Co když si ale té nápovědy vůbec nevšimnou?
Dvou nápověd by si všimnout mohli.
Tří určitě.
A já bych tu šifru měla co nejdříve dodělat.
Jé, ono už je tolik hodin!
Lžou ty hodiny?
Ne, jasně že nelžou.
Áá, to je textu!
Hou, mám dopsáno!

(f) Šifra od Johany Štěchové:
71, 13, 39, 46„ 17, 39, 46„ 17, 79, 93, 31„ 13, 39, 97, 74„,

Následuje i pokračování slibované čtveřice s metašifrou od Doc.MM Julie Kle-
mentové.
Úloha 4.2 [6b]:
Šifra 1
Jednoho dne seděl Tomáš u svého počítače, když náhle dostal skvěou slevu na knihu
o magii.
Na pdě svého domu se naučil levitovat nad zemí pomocí starého kouzla.
Koupil si levný taliman na trhu s kuriozitami.
Najednou přišla zpráva od jeho starého přítele Vinenta, Tomáš rychle vyťukal na
klávesnici odpověď, že přijede.
Rozhodl se cestovat městskou hromadnou dopravou až do daleké Ameriky, do měs-
ta ashingtonu.
Tm se zúčastnil rozpravy o tajemných silách v dějinách lidstva.
Během ní rozumně řekl pravdu o svých izarních schopnostech.
Později se učil pravopis v nové škole magie, aby nedělal tak často hrbé chyby,
a dokonce se naučil i psát všemi deseti.
V jeho zahradě rostla kouzelná levandule, která svou ůní uměla léčit.
Nakonec tak dodržel nejdůležitější pravidlo z ikipedie, tedy že má pomáhat ostat-
ním.
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Šifra 3

Závěrečná metašifra (šifry 2 a 4 najdete v předchozím čísle)
Šifra 1 + Šifra 2 + Šifra 3 + Šifra 4

Olga a Pája; Olga.dvorakova17@gmail.com
odevzdávejte do odevzdávátka

mailto:Olga.dvorakova17@gmail.com
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Řešení 3. dílu
Zadaní barevně najdete na https://mam.mff.cuni.cz/media/cislo/pdf/32/
32-3.pdf.

Úloha 3.1
Zadání:
Vyřešte následující šifry. Zajímá nás nejen heslo, ale i princip řešení a jak jste na
něj přišli. Pro potřeby tisku byla do dvou šifer doplněna velká písmena označující
barvu (Č – červená, F – fialová, H – hnědá, M – modrá, R – růžová, Z – zelená,
Ž – žlutá).

Stromeček

Řešení:
K řešení je zapotřebí semaforová abeceda12, jedna z klasických součástí šifrovacích
pomůcek. Pro určení jednotlivých znaků potřebujeme tři body. Jedním je vždy
černá baňka uprostřed stromečku, která určuje střed, a zbylé dva jsou vždycky
dvě baňky stejné barvy. Takto dostaneme 6 písmen (protože na stromečku máme
celkem 6 barev). Jak je správně seřadit za sebe nám napoví barevná světýlka na
stromečku, která mají náhodou stejných šest barev jako baňky. No a pořadí se čte
po drátě a normálně česky z levého horního rohu. Vyjde nám heslo VÁNOCE.

12https://cs.wikipedia.org/wiki/Semafor_(abeceda)

https://mam.mff.cuni.cz/media/cislo/pdf/32/32-3.pdf
https://mam.mff.cuni.cz/media/cislo/pdf/32/32-3.pdf
https://cs.wikipedia.org/wiki/Semafor_(abeceda)
https://cs.wikipedia.org/wiki/Semafor_(abeceda)
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Morseovka Chystáme je, protože on dítkem dobře míní. Vybírání hry. Smí vy-
právět jiným, časoměrné verše říkat musí.

Řešení:
K vyřešení této šifry je potřeba převést každé slovo na písmeno v morseově abecedě
podle dlouhých a krátkých slabik. Každá věta tvoří jedno slovo tajenky.
.-././..././-./../–//.—/.//-/.-./.-/...-/../-./.- → RESENIM JE TRAVINA.

Set

Řešení:
Tajenka této šifry se skrývá v jednotlivých sloupcích. V každém musíte najít set,
to znamená trojici obrázků, které se v každé vlastnosti (barva, tvar, počet, výplň)
buďto všechny liší, nebo všechny shodují. Následně si karty převedete do binárního
kódu: tam, kde byl set, dáme číslo jedna, a kde nebyl, dáme 0. Tímto obdržíme
písmena. Řešením je SMYK. (10011→S; 01101→M; 11001→Y; 01011→K)

Znaky

Řešení:
Po zakrytí horní poloviny šifry lze přečíst text ŠIFRY JSOU ZAJÍMAVÉ A NE-
TRADIČNÍ TÉMA.
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Výsledky 2. deadlinu 2. čísla a 1. deadlinu 3. čísla
Témata

Poř. Jméno R.
∑

−1 1 2 26 5 6 7
∑

0

∑
1

1. Doc.MM M. Jarvis 4 472,3 10,0 6,0 13,0 29,0 97,0
2. Doc.MM J. Klementová 4 450,8 4,0 13,7 8,0 25,7 89,7
3. Mgr.MM J. Thomitzek 1 68,7 14,0 10,0 1,7 25,7 68,7
4. Bc.MM M. Hrubá 2 49,3 3,3 3,3 49,3
5. Dr.MM P. Starý 4 155,6 41,3
6. Mgr.MM S. Šimečková 4 83,2 5,7 5,7 40,7
7. Bc.MM L. Koma 2 43,0 9,0 12,0 21,0 38,0
8. Mgr.MM P. Barták 2 94,1 6,0 8,0 14,0 32,2
9. Mgr.MM J. Fišerová 3 58,7 32,0

10. Mgr.MM F. Dvořák 3 84,1 11,5 11,5 29,0
11. Bc.MM E. Ježek 4 28,8 28,8
12. Bc.MM T. Holásek 3 28,2 28,2
13. Bc.MM S. Bažantová 3 24,6 7,0 3,1 10,1 24,6
14. Dr.MM B. Salajová 4 143,0 0,5 1,0 4,5 6,0 22,8
15. Bc.MM R. Krzystek 3 20,1 3,5 2,7 6,2 20,1

16.–18. M. Stroff 4 19,8 19,8
A. Mouchová 3 19,8 19,8
V. Kubrycht 4 19,8 19,8

19.–20. Mgr.MM Š. Swaczyna 1 56,7 2,5 2,0 4,5 19,5
L. Mihola 1 19,5 6,0 4,0 10,0 19,5

21. Doc.MM O. Nevěřil 4 283,7 5,0 4,3 9,3 19,3
22. Q. Liao 3 19,0 19,0
23. P. Fiala 4 16,5 5,5 5,5 16,5
24. Mgr.MM N. Jochová 3 62,2 5,8 5,8 15,1
25. Mgr.MM V. Kučera 4 93,0 15,0
26. A. Ježková 2 13,0 13,0
27. Mgr.MM A. Gauchet 4 93,3 1,2 1,2 12,8
28. Mgr.MM K. Bouchalová 1 61,6 12,0

29.–30. Dr.MM J. Jedlička 4 131,7 2,0 2,0 11,0
Mgr.MM F. Nouza 4 79,1 11,0

31. M. Vagner 3 10,5 10,5 10,5 10,5
32.–33. Doc.MM D. Kaňka 4 211,9 10,0

Doc.MM M. Ambros 3 230,6 1,0 1,0 10,0
34. Dr.MM K. Kučerová 1 136,5 8,5

35.–36. M. Hošek 4 7,0 7,0
Š. Hrdý 4 7,0 7,0



56 XXXII/4

Témata
Poř. Jméno R.

∑
−1 1 2 26 5 6 7

∑
0

∑
1

37. J. Kaplický 4 10,7 6,0
38. M. Pavlas 2 4,0 4,0 4,0 4,0
39. J. Štěchová 4 3,8 3,8 3,8 3,8
40. K. Kučerová 1 3,0 3,0

41.–43. L. Šemberová Z9 1,2 1,2 1,2 1,2
O. Plíšek 1 1,2 1,2 1,2 1,2
M. Vojtěch Z8 1,2 1,2 1,2 1,2

44. J. Dingová 4 1,0 1,0
45. J. Vospálek 3 0,6 0,6 0,6 0,6

Sloupeček
∑

−1 je součet všech bodů získaných v našem semináři,
∑

0 je součet
bodů v těchto deadlinech a

∑
1 součet všech bodů v tomto ročníku. Tituly uvedené

v předchozím textu slouží pouze pro účely M&M.

Časopis M&M je zastřešen Matematicko-fyzikální fakultou Univerzity Karlovy. S ob-
sahem časopisu je možné nakládat dle licence CC BY 4.0. Autory textů jsou, není-li
uvedeno jinak, organizátoři M&M. Realizace projektu byla podpořena Ministerstvem
školství, mládeže a tělovýchovy. Pokud si časopis nepřejete dále dostávat v tištěné po-
době, zrušte si prosím jeho odběr v nastavení svého účtu na webu.

Kontakty:
M&M, OPMK, MFF UK
Ke Karlovu 3
121 16 Praha 2

E-mail: mam@matfyz.cz
Web: mam.matfyz.cz
FB: casopis.MaM

mailto:mam@matfyz.cz
https://mam.mff.cuni.cz
https://www.facebook.com/casopis.MaM
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