M\&M číslo 4 ročník III

Milí Y̌ě̌itelé,
úvodem si dovolíme krapítek kritiky vašich ̛̌ě̌ení tím, že přip pomeneme některé vysoce frek ventované chyby, jicȟ̌ jste se zhusta dopouštěli. Především zopakujme, že vědecky článek by měl dosahovat jisté úrovně jak obsahové, tak i formální. Platí to obecně pro témata i rekreační úlohy.

Následující odstavec, obsahující drobné výtky k formální stránce příspěvkủ, se tyká jenom jisté neprázdné podmnožiny ř̌ě̌itelstva. Pokud si myslíte, 吕e v této podmnožině nejste, mưžete následující řádky přeskočit.

Používáte-li ve svých článcích a ̛̌ešeních jakékoliv matematické značky a značky pro fyzikální veličiny, je bezpodmínečně nutné, abyste ke každému takovému symbolu napsali, co znamená. Je to zpravidla nutná podmínka k tomu, abychom my vaše f̌ešení v konečném čase pochopili a mohli je objektivně obodovat. Rovnĕஜ̆ jest třeba diskutovat každy wzorec či vztah, ktery použijete. Z̃ádny vzorec nespadne jen tak shůry - vždycky se k němu dopracujete nějakou racionální úvahou, užitím určitých fyzikálních nebo matematických principů, tvrzení či vět. My nyní žádáme, abyste kromě oněch výsledných vztahủ vždy tễ̌ uváděli, a to co nejsrozumitelněji, jak jste na tyto vztahy přišli. Osamocená torza vzorcủ a výpočtŭ jsou vpravdě nicneříkající.

K obsahové stránce bychom vám chtěli sdělit, že za výroky typu "hélium je hélium a kyslík je kyslík", jejichž informační hodnota leží v intervalu $\langle-1 ; 0\rangle$, je naprosto zbytečné do y̌ešení psát. Zkuste si své příspěvky občas po sobě přečíst, aby je pak naše redakce nemusela od začátku až do konce opravovat a přepisovat.

Nezanedbatelnou motivací k dodržování právě zmíněných konvencí budiž pro vás bodování, v němž budeme hodnotit příspěvky s vysvětlenými symboly a vztahy o několik bodủ příznivěji než články tyto podmínky nesplǐující.

Co se týče soustředění, vaše vzkazy ohledně vaší účasti či neúčasti jsme si přečetli a bereme je na vědomí. Pozvánky na konferenci dostanete v pravý čas (tj. někdy koncem května nebo začatkem června). Pozváni budou vถ̌ichni ̛̌eక̌itelé, ktex̌í nám nenapsali, že se soustředění zúčastnit nemohou.

Do té doby můžete přemŷšlet o tom, jakými odbornými přednáškami byste mohli konferenci obohatit a zpesť̛it. Zatím nám nezby̧vá než popřát vám hodně štěstí nejen při Y̌ešení další série.

Vaše redakce

Téma 1 - Trosečníci

Dr. Pavol Habuda nám poslal velké množství příspěvkủ, jak teoretických, tak i experimentálních. Bohužel nemůžeme předev̌̌ím z technických důvodủ všechny jeho články v tomto čísle uveřejnit. Autorovi se omlouváme za všechna zestručnění, která jsme provedli. Není vyloučeno, že na některé z jeho článků dojde ještě v příští sérii.

Experimenty

Dr. Pavol Habuda: Experimentální mě̌̌ení zeměpisných soư̌adnic Žiliny

1. Měření zemĕpisné délky

V Žilině dne 6.3 .1997 vyšlo Slunce v $6: 18$ a zapadlo v $17: 36$. Vrcholilo tedy v $\frac{6: 18+17: 36}{2}=11: 57 \mathrm{SEC}$.
Tento den byla hodnota časové rovnice $\tau=-11,7 \mathrm{~min}$. Tedy Slunce na 15. poledníku nevrcholilo ve $12: 00$, ale v čase $t-\tau=12: 12$.

Časovy rozdíl mezi Žilinou a nultým poledníkem SEČ je tedy $\Delta t=15 \mathrm{~min}$.
Časovému intervalu 24 hodin odpovídá oblouk 360° opsany Sluncem.

Mư̌̆eme použít trojčlenku:

Označme $\lambda_{Z ̌ Z L}$ zeměpisnou délku Žiliny. Jestliže Slunce vyšlo ď̛ív v Žilině̌, potom $\lambda_{Z ̌ Z I L}>\lambda_{15}$. Proto je

$$
\lambda_{\ddot{Z}_{I L}}=\lambda_{15}+\Delta \lambda=18^{\circ} 45^{\prime}
$$

Přibližné určení chyby: Ježto jsem čas východu Slunce nemohl určit py̌ímo (bránil mi v tom kopec), použil jsem následující fintu. Když Slunce vychází, osvětluje oblaky a díky odrazu vzniká zậe. Py̌edpokládal jsem, že když zâři poprvé uvidím, bude to v okamžiku východu Slunce. Chyba určení času východu podle mne nepřesáhne 3 minuty, přičemž tuto odchylku způsobuje refrakce.

Odtud $\lambda=18^{\circ} 45^{\prime} \pm 45^{\prime}$.

2. Měření zeměpisné šiřky

Z hvězdâ̌ské ročenky zjistíme, že:

- rektascenze Slunce je $\alpha_{\odot}=23: 07$,
- deklinace Slunce je $\delta_{\odot}=-5^{\circ} 39^{\prime}$

Pro hodinovy úhel t platí: $t=\theta_{m}-\alpha$, kde θ_{m} je místní hvězdny čas.
Hvězdny čas v 0:00 UT byl $\theta=10: 56$.
Pro θ_{m} platí: $\theta_{m}=\theta+\Delta t+\lambda=10: 56+5: 18+17: 29$.
Potom $t=\theta_{m}-\alpha=17: 29-23: 07=-5: 38=-5: 38+24: 00=18: 22=275,5^{\circ}$.
Slunce je na obzoru, tedy transformační vztahy mezi rovníkovou a "obzorovou" soustavou se zredukují na vztah

$$
\frac{-\cos t}{\operatorname{tg} \delta}=\operatorname{tg} \varphi=\frac{-\cos \left(275,5^{\circ}\right)}{\operatorname{tg}\left(-5^{\circ} 39^{\prime}\right)}=0,97
$$

odtud $\varphi=44^{\circ}, \varphi=44^{\circ} \pm 4^{\circ}$.
Skutečná φ je něco přes 49°. Minimální odchylka měření času východu Slunce však způsobí velkou nepřesnost v zeměpisné scirřce. Tento nedostatek se dá odstranit měrením v okolí slunovratủ.

3. Mĕření zeměpisné šířky triangulac̆ní metodou

S výsledkem, který jsem pro zeměpisnou šířku dostal, jsem se nespokojil. Proto jsem dne 10.3.1997 vykonal ještě jeden experiment.
V tento den je deklinace Slunce $\delta_{\odot}=-3^{\circ} 59^{\prime}$ (vlastně okamžik kulminace). Pro Žilinu kulminace nastává o 15 minut ď̛íve než na nultém poledníku. $\tau=-10$, 5 min , tedy kulminace nastává pr̛ibližnê̌ v 11:56.

V okamžiku kulminace Slunce nemění svoji vy̌̌ku nad obzorem přílǐ̌ rychle, proto 10 minut, během kterých jsem mểill, se projeví až na desetinných místech naměrených hodnot, možná ještễ níže.

Pro úhel α z teorie vyplývá:

$$
\alpha=90^{\circ}-\varphi+\delta .
$$

Naměrilil jsem tyto hodnoty: $h=(1,27 \pm 0,01) \mathrm{m}$.

číslo mě̌̌.	$l[\mathrm{~cm}]$	$\operatorname{tg} \alpha$	$\alpha\left[{ }^{\circ}\right]$	$\Delta \alpha\left[^{\circ}\right]$
1.	169	0,751	36,924	$-0,044$
2.	168	0,756	37,088	$-0,208$
3.	169	0,751	36,924	$-0,044$
4.	170	0,747	36,762	0,118
5.	169	0,751	36,924	$-0,044$
6.	170	0,747	36,762	$\mathbf{0 , 1 1 8}$
7.	170	0,747	36,762	$\mathbf{0 , 1 1 8}$
8.	169	0,751	36,924	$-0,044$
9.	170	0,747	36,762	$\mathbf{0 , 1 1 8}$
10.	169	0,751	36,924	$-\mathbf{0 , 0 4 4}$
11.	169	0,751	36,924	$-0,044$

Obr. IV.1.1: Triangulac̃ní metoda

Statistickŷm zpracováním dostáváme $\alpha=(36,88 \pm 0,03)^{\circ}$.
Po dosazení do výrazu pro φ dostáváme

$$
\varphi=(49,14 \pm 0,03)^{\circ} .
$$

Skutečné hodnoty (změřené z mapy) jsou: $\varphi=49^{\circ} 20^{\prime} ; \lambda=18^{\circ} 45^{\prime}$
Poznámka redaktora. Valouchovy tabulky udávají souřadnice Žiliny takto: $\lambda=18^{\circ} 44^{\prime}, \varphi=49^{\circ} 14^{\prime}$. Obdržel-li Dr. Pavol Habuda výsledky, které uvádí, pak lze jeho mĕření hodnotit jako velmi přesné.

Dr. Daniel Klit: Mê̌ení zeměpisné siřky

Zkoušel jsem namě̛it tíhové zrychlení, avšak ani tím nejpřesnějjším zpǔsobem (kyvadlo) jsem nedosáhl potřebné přesnosti - chyba činila desetiny m•s ${ }^{-1}$. Předem jsem zavrhl tyto metody: mě̌̌ení magnetické indukce Země, polohy hvězd (nemám žádnou mapu), odchýlení tělesa při volném pádu, salinitu a zářivý tok. Také jsem se pokusil vyrobit vlastní Foucaultovo kyvadlo, leč neúspěšně. Kyvalo nejdéle čtvrt hodiny

Úspěnně jsem určil polokoul
a) dle kompasu
b) dle výtoku vody z umyvadla: vír měl směr proti pohybu hodinových ručiček.

Jelikož bylo právě̃ 21.3., bylo možné zeměpisnou šî̌ku určit dle výšky Slunce nad obzorem. Úhel jsem určil pomocí tyče. Pro danou tyč mi vyšla vŷ̌̆ka Slunce $\alpha=39,5^{\circ} \pm 2^{\circ}$, což platí pro $\varphi=90^{\circ}-\alpha=50^{\circ} 30^{\prime}$. Výsledek je přitom poměrně přesný, jelikož průměr Slunce je 32^{\prime}.

Gravitační zrychlení

Dr. Pavol Habuda: Teoretické odchylky v gravitačním zrychlení
Předpokládejme, že Země je rotační elipsoid s poloosami
$r_{\text {rovníkovy }}=r_{r}=6378,140 \mathrm{~km}$,
$r_{\text {polární }}=r_{P}=6356,755 \mathrm{~km}$.
Platí tedy (viz obr. IV.1.2):

$$
\frac{x^{2}}{r_{r}^{2}}+\frac{y^{2}}{r_{P}^{2}}=1, \quad x=r \cos \varphi^{\prime}, \quad y=r \sin \varphi^{\prime}
$$

kde φ^{\prime} je geocentrická šǐřka.

Odtud dostáváme poloměr jako funkci geocentrické šîřky:

$$
r=\frac{r_{P} r_{T}}{\sqrt{r_{r}^{2} \sin ^{2} \varphi^{\prime}+r_{P}^{2} \cos ^{2} \varphi^{\prime}}}
$$

kde φ^{\prime} je geocentrická siířka, kterou je třeba transformovat na geografickou šîrǐku φ :

Obr. IV.1.2: Zemský elipsoid

$$
\operatorname{tg} \varphi=\operatorname{tg} \varphi^{\prime} \cdot \frac{r_{r}^{2}}{r_{P}^{2}}
$$

Předpokládejme nyní, že povrch Země tvơ̌í ekvipotenciální plochu. Odtud

$$
-\frac{\kappa M}{r_{P}}=-\frac{\kappa M}{r_{r}}-\frac{1}{2} r_{r}{ }^{2} \omega^{2}
$$

z toho plyne

$$
r_{F}=\frac{r_{r}}{1+\frac{\omega^{2} r_{r}{ }^{3}}{2 \kappa M}} .
$$

Zde je M hmotnost Země, ω úhlová rychlost zemské rotace, κ gravitační konstanta. Z předchozího platí:

$$
\left.\operatorname{tg} \varphi=\operatorname{tg} \varphi^{\prime} \cdot\left(1+\frac{\omega^{2} r_{r}^{3}}{2 \kappa M}\right)^{2}, \quad a \operatorname{tex} \quad \cos \varphi^{\prime}=\sqrt{\left.\frac{\left(1+\frac{\omega^{2} \mathrm{r}_{\mathbf{r}}}{2}\right.}{2 \kappa \mathrm{M}}\right)^{2}-\left(\frac{\mathrm{r}_{\mathbf{r}}}{\mathrm{r}}\right)^{2}}\left(1+\frac{\omega^{2} \mathrm{r}_{\mathbf{r}}{ }^{3}}{2 \kappa M}\right)^{2}-1\right) .
$$

Budeme-li nyní Zemi považovat zase za kouli, bude platit

$$
g=\frac{\kappa M}{r^{2}}, \quad \text { a } \quad \text { také } \quad \omega=\frac{2 \pi}{\mathrm{~T}}
$$

Velmi přesným změ̌̌ením g za absurdního předpokladu, že hmota Země je rovnoměrně rozmístěná, bychom tedy mohli zjistit geografickou sî̌ǐku φ.

Coriolisova síla

Dr. Pavol Habuda: PY̌íspěvek k teorii Coriolisovy síly

Mgr. Milan Orlita versus Dr. Jan Mysliveček.
Platí: $\vec{F}_{C}=-k \vec{u} \times \vec{v}$. Nakresleme si, jak vypadá pokles hladiny. Z obrázku IV.1.3 a IV.1.4 je jasné, že žádná rotace nenastane, pouze se skloní povrch vytékající vody. Pro tento sklon vytékající vody platí

$$
\operatorname{tg} \alpha=\frac{F_{C}}{F_{g}}=\frac{2 v \omega \sin \varphi}{g}
$$

Touto metodou bychom tedy mohli změ̌it zeměpisnou sirǐku, ale je to velmi nepǐesné.
Domnívám se, že jestlǐ̌e má síla \vec{F}_{C} uvést do rotačního pohybu vodu ve vaně, pak musí vŷslednice působit nenulovým momentem na vrstvy. Jenže, pokud rychlost vytékající vody \vec{v} nezávisí na poloměru, potom ani F_{C} nemůže záviset na poloměru, tím pádem

$$
\Sigma \vec{r} \times \vec{F}_{C}=\overrightarrow{0} .
$$

VĚe se změní, pokud budeme uvažovat vanu s bočním sklonem α (viz obr. IV.1.5 a IV.1.6). Platí:

$$
F_{C 1}=-2 m \vec{\omega}_{1} \times \vec{v}_{1}=-2 m v \omega \sin \left(\varphi+90^{\circ}-\alpha\right)=-2 m v \omega \cos (\varphi-\alpha),
$$

$$
F_{C 2}=-2 m \vec{\omega} \times \vec{v}_{2}=-2 m v \omega \sin \left(90^{\circ}+\varphi+\alpha\right)=-2 m v \omega \cos (\varphi+\alpha)
$$

Porovnejme $F_{C 1}$ a $F_{C 2}$. Až na argumenty kosinů se tyto síly nelisíć.
Jenže $\cos (\varphi-\alpha)>\cos (\varphi+\alpha)$, což víme z průběhu funkce \cos, takže $F_{C 1}>F_{C 2}$.
Tedy vír se bude skutečně točit proti směru hodinových ručiček a pravdu má Mgr. Milan Orlita.
Na určení velikosti $\Sigma F_{C_{i}}$ bychom však potřebovali znát všechny složky rychlosti v_{i}, což je prakticky nemožné.

Experimentální pozorování ukázalo, že po zastavení přítoku vody do nádoby se cca 5 sekund vyrovnávají víry a nastává pohyb, který jsem předpovídal. Ten je způsobený právě rozpadem vírů a stáčením směru rychlosti dopadající vody. Vždy jsem po ustálení pozoroval směr rotace levotočivý, což potvrzuje teorii.

Obr. IV.1.3

Obr. IV.1.4

Obr. IV.1.6

Dr. Pavol Habuda: K špatnému odvození periody Foucaultova kyvadla
Neexistuje dǔvod, proč by měla po 24 hodinách nastat identická situace. Země je přece neinercíání soustava! Na kyvadlo působí neinerciální Coriolisova síla, proto neplatí princip relativity. Aby po 24 hodinách nastala identická situace všude na Zemi, musela by Země být inerciální vztažnou soustavou. Pak by ovšem zrychlení vzniklé působením Coriolisovy síly bylo $a_{c}=0$, tedy Země by nesměla rotovat ($\omega=0$), a tedy perioda otočení roviny kyvu kyvadla by byla nekonečná, což je v rozporu se skutečností.

Dr. Pavol Habuda: Ještě jednou Coriolisova síla

Představme si, že malá kulička klouže po hladké rovině která se dotýká země v zeměpisné šîricce φ. Odstředivá síla bude kompenzována silou Coriolisovou a kulička bude kroužit po kružnici. Tedy

$$
\frac{m v^{2}}{r}=2 m v \omega_{z} \sin \varphi \quad \Rightarrow \quad r=\frac{v}{2 \omega_{z} \sin \varphi} .
$$

Kulička opíše úhel 2π za čas $T=\frac{\pi}{\omega_{z} \sin \varphi}$.
Pokud máte rovinu bez tření, mưžete experimentovat.

Dr. Pavol Habuda: Solární konstanta

Hodnotu, kterou udává Dr. Daniel Klír pro sluneční konstantu, musíme opravit o absorbci vzduchu, rozptyl atd. Hodnota, kterou udává, je zâ̌ivý tok dopadající na jednotku povrchu nad atmosférou.

Když započítáme vŷ́e uvedené vlivy, účinny koeficient bude asi 30%. Touto hodnotou si nejsem zcela jist, ale Ǐádově určitě souhlasí. Tedy povrchová "sluneční konstanta" je $S_{\text {Povrchu }} \approx 400 \mathrm{~W} \cdot \mathrm{~m}^{-2}$.
K mě̌̌ení sluneční konstanty mưžeme použít tzv. "rusky způsob". Necht sluneční paprsky dopadají na plachtu pod úhlem α. Je-li plachta rovnobèzná se zemí, pak $\alpha=90^{\circ}-\varphi+\delta$, kde δ je deklinace Slunce.

Namočíme plachtu, aby obsahovala $m \mathrm{~kg}$ vody. Necháme ji vysušit na vzduchu. Vyschne za čas t_{l}.
Potom vezmeme stejné množství vody, které ohřejeme v kalorimetru spirálous výkonem P. Voda se vypaří za čas t_{2}.

Dodaná tepla jsou stejná, tedy

$$
\frac{P}{t_{2}}=\frac{S_{\mathrm{povrchu}} \cdot S \cdot \sin \alpha}{t_{1}}
$$

kde S je plocha plachty.
Tedy $S_{\text {povrchu }}=\frac{P}{S \sin \alpha} \frac{t_{1}}{t_{2}}$. Měřit takto zeměpisnou šî̌̌ku je samozřejmě nereálné.

Dr. Pavol Habuda: Vylety zemské osy aneb několik zajímavostí

Zemská osa neprotíná povrch Země pơ̌ád ve stejném bodě, nýbrž se nepatrně pohybuje. Tento efekt má na svědomí, že zeměpisná zîri̛ka pevně zvoleného místa se mění až o úhel $0,7^{\prime \prime}$, což činí asi 20 metrů.

Pól za rok vykoná pohyb po elipse o poloosách $7,5 \mathrm{~m}$ a $2,5 \mathrm{~m}$ (tyto hodnoty se však mění). Rovně̌̌ koná pohyb po kružnici s poloměrem 4 m s periodou 415 až 433 dní. Tyto pohyby se dějí v kladném smyslu otáčení.

Efekt je způsoben skutečností, že osa rotace nesplývá s geometrickou osou, což je důsledek nerovnoměrného rozložení hmoty Země.

Euler pro pohyb pólu odvodil periodu 300 dní. Tato hodnota se však liží od skutečné, protože Země oproti Eulerovým předpokladům není tuhé a nepružné těleso. Chybu zvětšují ještě̌ dalǒí vlivy jako např. sezónní výkyvy teploty a tlaku.
Z dalších jevů jmenujme pohyby zemských desek, které způsobují změnu zeměpisné sířky f̌adově̃ cm.
Závěr z tohoto vlastivědného intermezza je ten, že přesnost mě̌ené zeměpisné polohy je omezená.

Magnetismus

Dr. Pavol Habuda: Magnetismus

Mêjme magnetku upevněnou v těžišti. Pro periodu kyvu horizontálně kývající magnetky platí:

$$
T=\pi \sqrt{\frac{J}{M H}}
$$

kde J je moment setrvačnosti, M magnetický moment a H horizontální složka magn. pole.
Odtud dostáváme

$$
M \cdot H=\frac{\pi^{2} J}{T^{2}}
$$

Umístěme kolmo na směr (magn.) sever-jih magnet, který nám vychŷlí magnetku o úhel α.
Pro malé úhly α platí

$$
\frac{M}{H}=\frac{r^{3}}{2} \alpha
$$

kde r je vzdálenost magnetu od magnetky ($r \gg r_{m} ; r_{m}$ je průmèr magnetky).
Změ̛rme nyní T, J, r a α experimentálně, a dostáváme

$$
H=\sqrt{\frac{2 \pi^{2} J}{T^{2} r^{3} \alpha}},
$$

jak praví jedna starší učebnice astrofyziky.
Platí $H=T \sin i($ viz obr. IV.1.7),

$$
T=\sqrt{H^{2}+Z^{2}}
$$

Uvážíme-li publikované vztahy, pak

$$
\frac{H}{Z}=\frac{1}{Z} \operatorname{cotg} \varphi_{m}=\operatorname{cotg} i
$$

odtud $2 \operatorname{tg} i=\operatorname{tg} \varphi_{m}$.
Později jsem přišel na to, že Mgr. Milan Orlita prostě bez přečtení opsal tyto vztahy z knihy R. Brázdil a kol. - Úvod do studia planety Země.

Tyto vztahy neplatí tak, jak mají, a proto jsem dělal mnoho věcí zbytečně. Je hanba, že se vědec uchylí k takovymto praktikám, opsat něco bez prostudování.

Periodu T bych změřil přístrojem, ktery jsem popsal minule. Totiž: $T^{2}=B_{x}^{2}+B_{y}^{2}+B_{z}^{2}$.
Máme tedy dva systémy soư̌adnic, pro které je třeba odvodit transformační vztahy. Budu je odvozovat metodou transformace souřadnic, tedy necht platí, že nulovy poledník prochází průsečíkem rovníku geografického a geomagnetického (viz obr. IV.1.8). Souǐadnice λ_{m} (magn. délka) a φ_{m} (magn. ̌̌ířka) jsou spojeny s geocentrickými souřadnicemi x, y, z pomocí vztahů

$$
\begin{aligned}
& x=R_{z} \cdot \cos \varphi_{m} \cos \lambda_{m} \\
& y=R_{z} \cdot \cos \varphi_{m} \sin \lambda_{m} \\
& z=R \sin \varphi_{m}
\end{aligned}
$$

přičemž rovina $x y$ je rovinou magn. rovníku, osa x míríí k průsečíku obou rovníkủ a osa z k severnímu magn. pólu.

Na základě tohoto lze už lehce nalézt transformační vztahy mezi oběma soustavami. Použijme poučku sférické trigonometrie, že paralelním posunutím se směr souľadnicových os nemění.

Sklon obou rovníkŭ je

$$
\delta=\mid \angle \text { SevZemPól, StředZemě, SevMagnPól|. }
$$

Tedy

$$
\begin{aligned}
\cos \varphi_{m} \cos \lambda_{m} & =\cos \varphi \cos \lambda \\
\cos \varphi_{m} \sin \lambda_{m} & =\cos \varphi \sin \lambda \cos \delta+\sin \varphi \sin \delta \\
\sin \varphi_{m} & =\sin \varphi \cos \delta-\cos \varphi \sin \lambda \sin \delta \\
\delta & =90^{\circ}-77^{\circ}=23^{\circ}
\end{aligned}
$$

Zaved̉me přirozenějǒí systém, necht nulovy magn. poledník prochází všemi čty̌̌mi póly.
Odtud $\lambda_{m i}=\lambda_{m}-102^{\circ}=\lambda_{m}+\lambda$ (SMP).
Ještě̌ zbyvá určit λ_{m}. Označme úhel κ jako odchylku SMP od SZP - magnetická deklinace.
Ze sinové věty pro sféricky trojúhelník plyne:

$$
\cos \lambda_{m i}=\frac{\cos \kappa \cos \varphi-\cos \delta \cos \varphi_{m}}{\sin \delta \sin \varphi_{m}}
$$

Nyní tedy stačí změ̌it magnetickou deklinaci κ, což je poměrně jednoduché. Je to odchylka magnetky od Polárky (přibližnẽ̛).

Po vyřešení těchto rovnic (radêjji numericky, analyticky si na to netroufám) dostaneme φ a λ, zeměpisné soữadnice našeho místa.

Zásadní rozdíl mezi mým článkem a článkem Mgr. Milana Orlity je v tom, že dotyčny pravděpodobně odněkud opsal vztahy, a neuvědomil si, že ve vztazích

$$
\begin{aligned}
H & =\frac{\sigma_{0}}{4 \pi} \frac{m}{R^{3}} \cos \varphi_{m} \\
Z & =\frac{\sigma_{0}}{4 \pi} \frac{2 m}{R^{3}} \sin \varphi_{m}
\end{aligned}
$$

vystupuje magnetická žířka φ_{m}, a ne zeměpisná žî̌̌ka φ.
Např. pro SMP je magnetická deklinace neurčitá, u magnetky nemŭžeme určit témě̌̌ žádný parametr, protože se stále vrtí. To by znamenalo, že $\operatorname{tg} \varphi \rightarrow \infty$, to jest $\varphi \rightarrow 90^{\circ}$. Jenže to je v rozporu se skutečností.

Mnou právě popsaná metoda nebude přílî̌i přesná, protože napy̌. vulkanická činnost dost ovlivňuje magn. pole, existují i jiné magnetické anomálie.

Obr. IV.1.7

Obr. IV.1.8

Obr. IV.1.9: $y=90^{\circ}-\varphi_{m}$

Náměty

Dr. Pavol Habuda nám zaslal také několik pěkných námětů.
Po pár dnech na ostrově jste se vydali na vycházku, a potkali jste jiného trosečníka (poznámka překladatele: slovensky "stroskotanca"). Vetchy kmet, který mohl být klidně 100 roků stár, se s vámi dal do řeči, a tvrdil vám, že Země je deska, kterou nesou tři sloni stojící na želvě. Uměli byste mu vyvrátit tuto jeho teoriì? Také tvrdí, že Země je středem vesmíru.

Dále se vám snažil namluvit, že na ostrovẽ plyne čas po skocích, a právê před chvílí jeden takový skok nastal. Nikdo neví, jestli to byl skok do minulosti nebo do budoucnosti, ani o kolik se posunul čas.

Předpokládejme, že mluvil pravdu. Uměli byste Y̌íci, jak daleko v čase jste se octli od roku 1996, kdy jste ztroskotali? Zŭstala vám stále bystrá hlava.

Téma 4 - Tetris

Prof. Tomáš Brauner: Reakce na článek Mgr. Aleše PY̌ívětivého
Autor popisuje vzorec pro počet n-rozměrných útvarủ skládajících se ze 4 nadkrychlí. Vychází z toho, že plošné útvary složené ze 3 čtverečkŭ jsou pouze 2 (viz minulé číslo). Na tyto 2 útvary budeme připojovat čtvrtou krychli ve více dimenzích.

Podle článku Bc. Tomáše Bárty otištěném v M\&M ročník 2, číslo 3, víme, že n-rozměrná krychle má $2 n$ ($n-1$)-rozměrných stěn. Při přechodu od dimenze $n \mathrm{k}$ dimenzi $n+1$ tedy přibude celkem 6 stěn, kam se dá připojit
čtvrtá krychle. U každé z těchto 6 možností jsou 2 zrcadlově otočené, pak jsou ještě stejná 2 krajní připojení \Rightarrow celkem přibudou 2 nové tvary.

Počet n-rozměrných kostek je tedy $p(n)=2 n+k$, podle počtu počáteční podmínky $p(2)=5$ zjistíme, že $p=2 n+1$.

Pozn. Redakce je jiného mínění. Teoreticky mưžeme čtvrtou krychlicku připojit na tolik nových míst, ale prakticky je možno vhodnou prostorovou rotací vzniklý útvar umístit do trojrozměrného prostoru. Např. hibovolné 3 krychle lze proložit rovinou, analogicky libovolné 4 krychle lze proložit prostorem. Takže pro libovolné $n \geq 3$ je $p=7$

Mgr. Jan Holeček: Algoritmus hledání nových kostiček

Autor zavrhl možnost uložení tvarů kostiček do dvojrozměrného pole, protože mu to připadalo neefektivní. Místo toho ukládá tvary kostiček ve 'vektorovém' tvaru (popisuje, jak vypadá ten který vybềzek kostičky).

Podle toho se Ǐídí i jím navržené algoritmy. Bohužel musíme konstatovat, že ty to algoritmy nejsou ve stadiu, kdy by je bylo možné vytisknout. Autor nově vznikly útvar porovnává se všemi již nalezenými ve všech 8 rotacích, ale přesto si myslíme, že toto porovnávání nebude vždy spolehlivé. Slabinou je i generování nových útvarů.

Domnívám se, že ukládání útvarů do pole není zas tak špatné y̌ešení. Ve svém programu, který kostičky velikosti n generoval, jsem použil seznamu se všemi útvary velikosti $n-1$, ke kterým jsem přikládal postupně na všechna místa obvodu novy čtvereček. Ütvary byly uloženy v dvojrozměrném poli a každy novĕ vznikly byl porovnán ve v̌̌emi již nalezenými ve všech 8 rotacích. Je nutné dát také pozor na správné posunutí kostičky. Tímto programem byly také vygenerovány všechny útvary vytištěné v tomto časopisu.

Bc. Ivana C̆apková, Prof. Tomás̆ Brauner: Trojúhelníkové útvary

Autoři hledali všechny útvary do velikosti 6 v trojúhelníkové síti. Jsou zobrazeny na následujícím obrázku. Nezbývá mi, než vám popǐáa štê̌stí při hledání šestiúhelníkovych útvarů, které by měly být podle mého názoru 'nejhezč'.'

Bc. Ivana Čapková: Teorie čtverečkových a trojúhelníkovych útvarů

Autorka nejprve nesmírně vyčerpávajícím ručním postupem nalezla všech 108 útvarủ velikosti 7. Za tuto duševní námahu sice děkujeme, ale podoty̌káme, že tato mechanická práce není posláním našeho časopisu. Nesporně užitečnější by bylo hledání teorie těchto kostek, nebot toto hledání mưže rychleji a spolehlivěji provádět počítač (viz nás̃ redakční program). Na obranu autorky však musím dodat, že spolus tímto příspěvkem poslala i velice zajímavou teorii.

Všimněte si třetího út varu od konce, nebở je to první nepříjemný útvar, znemožňuje nám vypln̆ování roviny těmito útvary.

Zkusme si počet útvarů velikosti n vyjádřit jako součet útvarů, které se vejdou do obdélníků různých velikostí. Počet některých těchto útvarů již mǔžeme analyticky vyjáď̛it lépe než celkový počet útvarủ nebo počet útvarů vzniklých z nejdelšího ̛̌etězce.

k	celkem	$1 \times k$	$2 \times(k-1)$	$2 \times(k-2)$	$2 \times(k-3)$	$3 \times(k-2)$	$3 \times(k-3)$	$3 \times(k-4)$	$4 \times(k-3)$
3	2	$=$	1	1					
4	5	$=$	1	3	1		6		
5	12	$=$	1	3	2		15	7	
6	35	$=$	1	5	6	1	25	40	7

Útvar velikosti $1 \times k$ je vždy jenom jeden. Útvarů velikosti $2 \times(k-1)$ je vždy $2\lfloor N / 2\rfloor-1$. Odvodí se to lehce takto: út war mǔ̌̌e být bud úsečka s jedním výstupkem, to je $\left\lceil\frac{N-1}{2}\right\rceil$ možností, nebo 2 úsečky napojené na sebe, to je $\left\lceil\frac{N-3}{2}\right\rceil$ možností, sečtením těchto 2 čísel dostaneme uvedeny výsledek. Počty útvarů dalších velikostí již tak snadno spočítat nejdou.

Analogická úvaha se dá provést i u trojúhelníkových kostiček. Tyto kostičky však nebudeme omezovat do obdélníku, ale do zploštělého šestiúhelnúku, který bude dán 3 délkami stran (podle 3 směrů čar ve trojúhelníkové síti). Podobná tabulka je:

k	celkem		$1 \times\lceil k / 2\rceil$	$2 \times 2 \times 2$	$2 \times 2 \times 3$	$2 \times 3 \times 3$	$2 \times 2 \times 4$
3	1	$=$	1	2			
4	3	$=$	1	2	2		
5	4	$=$	1	1	2	6	1

Bohužel ani zde zatím nebyl nalezen obecný vzorec popisující počet jednotlivych kombinací.
Rada. Zkuste využít vytvořujících funkcí. Kdo neví, co to je, at'si přečte nějaký úvod do diskrétní matematiky, např. Matoušek \& Nešetřil: Kapitoly z diskrétní matematiky.

Téma 5 - List papíru

Dr. Pavol Habuda nám zaslal hned několik výsledků provedenǵch měrení. Kromě těch, které jsme stihli přepsat, poslal také mě̌̌ení relativní permeability papíru. Tento příspěvek otiskneme v přisistím čísle.

Ještě než se pustíte do četby, chtěl bych upozornit nederivujícía neintegrujícíčást populace, že asi textu přílǐ̌ neporozumí. Nevadí, všechno se dá napravit. Na soustředění určitě nêjaká ta přednáška z diferenciálního počtu bude. Poznamenejme navíc, že přístup Dr. Pavla Habudy není přílǐ̌ matematicky korektní (odvozování přes diferenciály), Redakce se však domnívá, že všechny výsledky má autor správně a z hlediska fyzikálního o tak velký prohřešek nejde.

Dr. Pavol Habuda: Mêření Youngova modulu pružnosti papíru

Položme papír na dva břity tak, aby se samovolně prohnul. Rozdělme si papír na velmi tenké vrstvy. Vrstvy nǐ̛e položené se budou přì prohnutí prodlužovat, vy̌še položené zkracovat. Papír považujme za pravidelný hranol. Podle této teorie středem jeho prưřezu prochází tzv. neutrální vrstva, která nemění svoji délku.

Předpokládejme, že výchylka nejvíce prohnutého místa papíru od jeho původní polohy je mnohem menší než délka papíru. Pr̛edpokládejme dále, že papír je homogenní.

Na bod A papíru, jehož vzdálenost od břitu je x, působí ohybovy moment $M_{0}=F \cdot\left(\frac{b}{2}-x\right)$, přičem ̌ vzdálenost x je malá. Proti tomuto momentu reaguje materiál papíru momentem vnity̌ních soudržných sil, které se snaží udržet papír v rovnováze.

Vyšetř̌eme okolí bodu A. Necht̉ oblouk neutrální vrstvy má v tomto bodě poloměr ǩ̛ivostí r. Tloušicka papíru je h. Mǔžeme říci, že i vrstva vzdálená h od neutrální vrstvy má ty̌̌z poloměr křivosti r.

Tedy pro relativní prodloužení určené poměrem prodloužení Δl a vzdálenosti břitů l platí

$$
\begin{equation*}
\epsilon=\frac{\Delta l}{l}=\frac{(r+h) \mathrm{d} \varphi-\mathrm{r} \mathrm{~d} \varphi}{\mathrm{rd} \varphi}=\frac{h}{r}, \tag{5.1}
\end{equation*}
$$

Toto prodloužení je způsobeno napětím v tahu σ, pro které z Hookova zákona platí

$$
\sigma=E \epsilon=E \frac{h}{r}=k o n s t \cdot h,
$$

kde E je Youngǔv modul pružnosti v tahu.
Tedy napětí klesá přímo úměrně se zmenšováním vzdálenosti vrstvy od neutrální vrstvy. V horních vrstvách přechází tah v tlak. Nemá-li bŷt neutrální vrst va namáhána, pak se výsledné příspěvky od obou stran vyruší. Platí $\sigma=\frac{\mathrm{dF}}{\mathrm{dS}}$.

Celkový moment sil vůči neutrální vrstvě je

$$
\begin{equation*}
M_{0}=\frac{E}{r} \int_{0}^{\frac{h}{2}} 2 h^{2} \mathrm{dS}=\frac{\mathrm{EI}}{\mathrm{r}} \tag{5.3}
\end{equation*}
$$

kde I je z definice plošný moment setrvačnosti.
Mưžeme nahlédnout, že pror platí

$$
\begin{equation*}
\frac{1}{r}=\frac{\operatorname{tg} \alpha}{x} \tag{5.4}
\end{equation*}
$$

kde úhel α přísluší oblouku x se středem ve středu křivosti.
Odtud

$$
\begin{equation*}
\frac{1}{r}=\frac{\mathrm{d} \alpha}{\mathrm{dx}}=\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}, \tag{5.5}
\end{equation*}
$$

kde y je výchylka od původní polohy ve svislém směru.
Dosazením za poloměr křivosti r z integrálu (5.3) dostaneme

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{M_{0}}{E I} \tag{5.6}
\end{equation*}
$$

Do této rovnice dosadime za M_{0} a obdržíme:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{F\left(\frac{b}{2}-x\right)}{2 E I} \tag{5.7}
\end{equation*}
$$

odtud

$$
\begin{equation*}
y=\frac{F}{2 E I}\left(\int_{0}^{\frac{l}{2}} \int_{0}^{\frac{l}{2}} \frac{l}{2} \mathrm{dxdx}-\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \mathrm{xdxdx}\right)=\frac{\mathrm{F}}{2 \mathrm{EI}}\left[\frac{\mathrm{~lx}^{2}}{4}-\frac{\mathrm{x}^{3}}{6}\right]_{0}^{\frac{1}{2}}=\frac{\mathrm{Fl}^{3}}{48 \mathrm{EI}} \tag{5.8}
\end{equation*}
$$

Pro plošny moment setrvačnosti obdélníku pak autor odvodil vztah

$$
I=\frac{a h^{3}}{12}
$$

kde a je suř̌kka papíru; pro jeho délku pritom platí $b \approx l$.
Získal tak konečnou podobu vzorce pro výpočet Youngova modulu:

$$
E=\frac{m g l^{3}}{3 a y h^{3}}
$$

Namě̌rené hodnoty:
$m=5,57 \mathrm{~g}$ s relativní odchylkou $\delta_{m}=2 \%$,
$h=0,11 \mathrm{~mm}$ s relativní odchylkou $\delta_{h}=4 \%$,
$a=2,9 \mathrm{~cm}$ s rel. odchylkou $\delta_{a}=3 \%$.
Výchylku y mě̌îil autor pro různé vzdálenosti břitů l třicetkrát. Dospěl (patrně regresí) k experimentální závislosti

$$
\begin{equation*}
E=\frac{m g l^{3}}{3 a y h^{3}} \cdot\left[1+2,85\left(\frac{h}{l}\right)^{2}-0,84\left(\frac{h}{l}\right)^{3}\right] \tag{5.9}
\end{equation*}
$$

Rozdíl hodnot E mezi tímto experimentálním vztahem a vztahem teoretickým se však projevil až v desetinách MPa, což je vzhledem k níže uvedené hodnotě E zanedbatelné.

Pro interval hodnot $17,2 \mathrm{~cm} \leq l \leq 18,3 \mathrm{~cm}$ ležely výchylky y v intervalu $1,5 \mathrm{~cm}<y<2,5 \mathrm{~cm}$, zpracováním všech dat dostal autor skutečnou hodnotu

$$
E=(1,30 \pm 0,03) \cdot 10^{11} \mathrm{~Pa}
$$

Na úplny závěr pak poznamenává, že ze znalosti Youngova modulu lze již snadno určit rychlost žî̌ení podélných vln v papíru

$$
\begin{equation*}
v=\sqrt{\frac{E}{\varrho}}=12,5 \mathrm{~km} \cdot \mathrm{~s}^{-1} \tag{5.10}
\end{equation*}
$$

s relativní odchylkou 4\%. Symbol ϱ představuje hustotu papíru.

Poznámka redakce. Pokud uvážime, že i nenamáhaný papír se míneě prohýbá a kroutí, potom shledáváme měření jako mírně nekorektní. Správněǰ̌í by možná bylo použít velmi malý kus papíru a zatěžovat ho ve středu závažíčky.

Dr. Pavol Habuda: Mêrení modulu torze v polních podmínkách

Z papíru vystřihneme obdélníček o delší straně l a kratší straně h. Kratší stranu obdélníku nahoře upevníme a obdélník od ní necháme volně viset, tj. rovina papíru je svislá. Na levy dolní roh visícího proužku papíru připevněme PVC vlákno. Pravý dolní roh pevně fixujme, například druhým vláknem, které přivážeme k nějakému pevnému vybavení naší laboratoře. Volné vlákno přehodíme přes kladku a na jeho konec budeme zavě̌̌ovat závaží. Díky tíhové síle závaží bude vlákno tahat za levý roh papíru. Za pravy roh papíru však bude tahat síla způsobená upevněním. Proužek papíru se tudíž začne kroutit.

Označme modul torze (jinak řečeno modul pružnosti ve smyku) písmenem G. Pǔsobící síla necht způsobí otočení dolní strany papíru o výchylku φ. Předpokládejme, že osa tohoto otočení je svislá a prochází středem symetrie ještě nedeformovaného papíru, tj. středem kratších stran obdélníka. Střed otočení pro dolní kratší hranu je tedy totožny s jejím geometrickým středem. Vzdálenost tohoto středu otočení od jednoho z dolních rohủ papíru je $r=\frac{h}{2}$.

Uvažme bod na dolní hraně papíru, kterýg leží ve vzdálenosti $x \leq r$ od středu rotace. Pro smykovou deformaci γ potom platí

$$
\begin{equation*}
\gamma=\frac{x \varphi}{l}=\frac{\tau}{G}, \tag{5.11}
\end{equation*}
$$

kde τ je mechanické napětí, $\tau=\frac{\mathrm{dF}}{\mathrm{dS}}$, tedy první derivace síly podle prů̌rezu v tomto bodẽ.
Vlákna působí na papír silou témě̌̌ v jeho rozích, tedy ve vzdálenosti r od osy rotace. Uvážíme-li z předchozího, že diferenciál síly je

$$
\begin{equation*}
\mathrm{dF}=\frac{G x \varphi \mathrm{dS}}{1} \tag{5.12}
\end{equation*}
$$

pak tato síla ve vzdálenosti x od středu rotace pǔsobí momentem síly

$$
\begin{equation*}
\mathrm{dM}=x \mathrm{dF}=\frac{\mathrm{G} \varphi \mathrm{x}^{2}}{\mathrm{l}} \mathrm{dS} \tag{5.13}
\end{equation*}
$$

Moment M celého prů̌̌ezu je určitý integrál přes tento průǐez:

$$
\begin{equation*}
M=\int_{-r}^{r} x \mathrm{dF}=2 \cdot \int_{0}^{\mathrm{T}} \frac{\mathrm{G} \varphi \mathrm{x}^{2}}{\mathrm{l}} \mathrm{dS}=\frac{2 \mathrm{G} \varphi}{1} \cdot \int_{0}^{\mathrm{T}} \mathrm{x}^{2} \mathrm{dS} \tag{5.14}
\end{equation*}
$$

Pro diferenciál povrchu dS platí $\mathbf{d S}=$ hdx. Tedy

$$
\begin{equation*}
M=\frac{2 G h \varphi}{l} \cdot \int_{0}^{r} x^{2} \mathrm{dx}, \tag{5.15}
\end{equation*}
$$

což ale mư̌̌eme zintegrovat:

$$
\begin{equation*}
M=\frac{2 G h \varphi}{l} \cdot \int_{0}^{r} x^{2} \mathrm{dx},=\frac{2 \mathrm{Gh} \varphi}{\mathrm{l}}\left[\frac{\mathrm{x}^{3}}{3}\right]_{0}^{\mathrm{r}}=\frac{2 \mathrm{Gh} \varphi \mathrm{r}^{3}}{3 l} \tag{5.16}
\end{equation*}
$$

Z tohoto vztahu vyjádřeme modul torze G :

$$
G=\frac{3 M l}{2 h r^{3} \varphi}
$$

daný moment síly je ovšem $M=m g \cdot r$, kde m je hmotnost závaží zavě̌ovaného na vlákno. Po dosazení obdržíme

$$
\begin{equation*}
G=\frac{3 m g r l}{2 h r^{3} \varphi}=\frac{3 m g l}{2 h r^{2} \varphi} \tag{5.17}
\end{equation*}
$$

Mêřil jsem výchylku φ v závislosti na hmotnosti závaží. Jako zátěze jsem použil závažíčka o hmotnosti 50 mg . Pro výchylku $\frac{\pi}{2}$ jsem obdržel po dvaceti mě̌̌eních hmotnost $m=(2,6 \pm 0,1) g$, chyba při měření m byla 4%.

Dosazením do odvozeného vz tahu máme modul torze $(1,0 \pm 0,1) \cdot 10^{5} \mathrm{~Pa}$, vzniká totiž ještě chyba při měření výchylky a pr̂́ślušných délek.

Poznámka. V diskusi autor značně pochybuje o správnosti svého měření, nebot̉ mezi modulem torze a Youngovým modulem pružnosti by pro tutéž látku měl platit vztah

$$
\frac{E}{3}<G<\frac{E}{2}
$$

což ale podle předchozího autorova měrení Youngova modulu neplatí.

Téma 6 - Hélium

Uvážil jsem, že je na čase mírně usměrnit tok vašich úvah, které se (zřejmě díky příliš obecné formulaci tématu) občas pozastavily ve velmi obecné a nicnex̌íkající rovině. Také se mi nelíbilo, jestliže jste téma pochopili jako př̂́ležitost opisovat tabulky. V závěru proto vyslovím několik velice konkrétních námětů k úvahám kvalitativním i kvantitativním.

Abych zabránil vašemu pokušení sklouzávat k výčtům tabulkových veličin přǐ̌azených héliu, př̌etiskuji tabulku vybraných vlastností nejen hélia, ale pro srovnání i vzduchu. Na tabulku se mữ̌ete ve svých článcích odvolávat jako na hodnověrný zdroj informací (pokud v ní ovšem nedošlo k tiskové chybě).

Hodnoty v tabulce jsou přepočteny do soustavy SI a pochází z těchto pramenů:

1) Kolektiv: MFChT tabulky, SPN Praha, 1989;
2) Miroslav Valouch: Pětimístné logaritmické tabulky a tabulky konstant, SNTL Praha, 1967.

	Hélium	vzduch
Hustota plynu	$0,1762 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ prí $0^{\circ} \mathrm{C}$	$1,2759 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ při $0^{\circ} \mathrm{C}$
Mêrná tepelná kapacita při stálém tlaku c_{F}	$5,234 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$ př̌i $18{ }^{\circ} \mathrm{C}$	$1,005 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$ príi $15^{\circ} \mathrm{C}$
Mêrná tepelná kapacita při stálém objemu \boldsymbol{c}_{v}	$3,153 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$ př̌i $18^{\circ} \mathrm{C}$	$0,718 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$ prizi $18^{\circ} \mathrm{C}$
Poissonova konstanta $\kappa=\frac{c_{F}}{c_{v}}$	1,66 prii $18^{\circ} \mathrm{C}$	1,40 při $18^{\circ} \mathrm{C}$
Tepelná vodivost	$144,61 \cdot 10^{-3} \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}$ prir $0^{\circ} \mathrm{C}$	$24,28 \cdot 10^{-3} \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}$ při $0^{\circ} \mathrm{C}$
Mĕrné skupenské teplo tání	$3,349 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1}$	
Měrné skupenské teplo varu	$25,121 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1}$	$209,34 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1}$
Teplota tání	$\begin{aligned} & -272,2^{\circ} \mathrm{C} \text { přic } 2,6 \mathrm{MPa} \\ & -269,6^{\circ} \mathrm{C} \text { prí } 10,4 \mathrm{MPa} \\ & \hline \end{aligned}$	
Teplota varu	$-268,934^{\circ} \mathrm{C}$ prì $1,013 \cdot 10^{5} \mathrm{~Pa}$	$-193{ }^{\circ} \mathrm{C}$ při $1,013 \cdot 10^{5} \mathrm{~Pa}$
Zvyšení teploty varu přírůstkem tlaku o 1 torr ${ }^{1)}$	$1 \cdot 10^{-3}{ }^{\circ} \mathrm{C}$	
Kritická teplota ${ }^{2}$)	$-267,9^{\circ} \mathrm{C}$	$-140,7^{\circ} \mathrm{C}$
Kritick ${ }^{\text {tlak }}{ }^{3}$	2,03 $\cdot 10^{5} \mathrm{~Pa}$	$38,50 \cdot 10^{5} \mathrm{~Pa}$
Molární hmotnost	$4,00 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	$28,96 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Střední volná dráha molekul	$17,5 \mathrm{~nm}$ při $0^{\circ} \mathrm{C}, 1,013 \cdot 10^{5} \mathrm{~Pa}$	
Počet srážek za jednotku času	$6,9 \cdot 10^{9} \mathrm{~s}^{-1}$ při $0^{\circ} \mathrm{C}, 1,013 \cdot 10^{5} \mathrm{~Pa}$	
Dynamická viskozita	$18,73 \cdot 10^{-6} \mathrm{~Pa} \cdot$ s prỳi $0^{\circ} \mathrm{C}, 1,013 \cdot 10^{5} \mathrm{~Pa}$	$17,1 \cdot 10^{-6} \mathrm{~Pa} \cdot \mathrm{~s}$ při $0^{\circ} \mathrm{C}, 1,013 \cdot 10^{5} \mathrm{~Pa}$
Rychlost šǐ̌ení zvuku	$\begin{aligned} & 971 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { pifi } 0^{\circ} \mathrm{C} \\ & 971 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { prí } 20^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 331 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { prí } 0^{\circ} \mathrm{C} \\ & 343 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { prí } 20^{\circ} \mathrm{C} \end{aligned}$
Hustota kapaliny	$122 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$	
Absolutní index lomu pro čáru D	1,000035 při $0^{\circ} \mathrm{C}, 1,013 \cdot 10^{5} \mathrm{~Pa}$	1,000292 při $0^{\circ} \mathrm{C}, 1,013 \cdot 10^{5} \mathrm{~Pa}$
Relativní permitivita	1,00007 při $18^{\circ} \mathrm{C}, 1,013 \cdot 10^{5} \mathrm{~Pa}$	$1,00060 \text { při } 18^{\circ} \mathrm{C}, 1,013 \cdot 10^{5} \mathrm{~Pa}$ pro suchy vzduch

Poznámky k tabulce:

1) 1 torr $=133,322 \mathrm{~Pa}$.
2) Kritická teplota je teplota, při ní̌̌ je hustota kapaliny rovna hustotě syté páry (tento stav se nazy vá "kriticky stav"). P̛̉i dalším zvy̌̌̌ení teploty přestane kapalná fáze látky existovat.
3) Tlak v kritickém stavu (viz pozn. 2).

Příspěvky

Dr. Daniel Klír přis uzuje značny význam počátečním podmínkám, za kterých stroj hélium vyráběl. Domnívá se, že tyto podmínky ovlivní rozložení hélia kolem Země. Uvádí, že za určitých podmínek mǔže odstředivá síla, působící na hélium, převládnout nad silou gravitační, která plyn poutá k Zemi, a část hélia odlétne z oblasti gravitačního vlivu Země.

Dr. Daniel Klír, Dr. Pavol Habuda a Mgr. Alě̌ PY̌ívětivy předpokládali, že všechno hélium na Zemi zůstane, a spočítali pro takovy případ tlak při zemském povrchu, pokud bude hélium rozlơ̌eno rovnoměrně kolem Země, jak je tomu napł̌. se současnou atmosférou.

Je-li $M=5 \cdot 10^{18} \mathrm{~kg}$ hmotnost hélia, $g=9,81 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ gravitační zrychlení (za předpokladu malé vŷsky atmosféry zanedbáme změnu g s vy̌skou), $R=6378000 \mathrm{~m}$ poloměr Země, pak pro tlak při povrchu platí zřejmě

$$
p=\frac{M g}{4 \pi R^{2}} \approx 9,56 \cdot 10^{4} \mathrm{~Pa},
$$

což je jen o trochu méně, ně̌ je současný atmosféricky tlak. To vše však přestane platit, pokud část hélia atmosféru opustí.

Otázkou udržení hélia v oblasti gravitačního působení Země se zabyvali Jarmila Mulačová, Jitka Krouželová a Dr. Daniel Klír. Situaci sice považují za nevypočìtatelnou (soudě dle toho, že nic nevypočítali), ale z nízké hustoty hélia soudí, že hroz ba úniku plynu je reálná a pravděpodobná. Atmosféra by dle Dr. Daniela Klíra zř̌ejmě̌ měla věť̌í tloušicku. V py̌ípadě úniku části hélia by zákonitě klesl atmosféricky tlak.

Změnu doby rotace Země spočítal Mgr. Alě̛ PY̌ivětivy za předpokladu, že tě̌ně̌ před vznikem hélia měla Země periodu $T=24 \mathrm{~h}$ a moment setrvačnosti vzhledem k ose rotace $I_{0}=4,3 \cdot 10^{37} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ (autor bohužel neuvádí, jak k této hodnotě I_{0} dospěl). Vznik héliové atmosféry prý způsobí změnu momentu setrvačnosti o $\Delta I=5 \cdot 10^{32} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ (opět nevíme, jak se autor k této hodnotě dobral!!!).

Platí zákon zachování momentu hybnosti:

$$
I_{0} \omega_{0}=\left(I_{0}+\Delta I\right) \omega
$$

kde ω_{0} je úhlová rychlost rotace před Trurlovým činem a ω úhlová rychlost po něm. Odtud Mgr. Alě̌ Přivětivy odvodil novou periodu

$$
\begin{gathered}
T=\frac{2 \pi}{\omega}=2 \pi \frac{I_{0}}{I_{0}+\Delta I} \omega_{0}=\frac{I_{0}}{I_{0}+\Delta I} T_{0}, \\
T=1,000012 \cdot T_{0},
\end{gathered}
$$

což je zanedbatelná změna oproti periodě původní.
Jitka Krouželová, Mgr. Štěpánka Kučková a Dr. Jan Mysliveček se zaobírali teplotou hélia. Mgr. Štěpánka Kučková si myslí, že na Zemi bude chladněji než dnes, protože hélium "odvádí teplo rychleji než vzduch". Dr. Jan Mysliveček soudí, že se obnoví aspon̆ zčásti skleníkovy efekt, čím ̌̌ se zmírní teplotní vy̌kyvy mezi dnem a nocí.

Dle téhož autora by mohli fyzikové hledat závislost rychlosti zirǐení z vuku v atmosfé̃e na teplotě. Přes den by pry byla rychlost zvuku asi $971 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, v noci by klesala s teplotou.

Šǐ̌ení zvuku zkoumali i další. Jitka Krouželová se domnívá, že by se třeba ani nemusely používat telefony. Bc. Kateřina Nováková poukaz uje na veselý fakt, že pokud by lidé mohli na chvíli sejmout skafandry, mluvili by jako hurvínci. Mgr. Štěpánka Kučková dodává, ěe by bylo nutno upravit stupnice hudebních nástrojǔ.

Dr. Daniel Klír upozorǐuje, že se změní absorbční spektrum v atmosfére, tedy se mǔǔou změnit barvy. Mgr. Štěpánka Kučková vidí přicciny změny barev okolních věcí i oblohy v rozdílu mezi indexem lomu hélia a vzduchu. Také se domnívá, že díky změně úhlu odrazu a dopadu budou některé optické přístroje ukazovat - cituji - "bludy".

Mgr. Alě̌ Přívětivy poukazuje na modrou barvu výboje v héliu, aniž by se však zmínil o tlaku, pf̌i kterém lze takovy yýboj pozorovat.

Jarmila Mulačová předpokládá, že se změní také propustnost atmosféry pro elektromagnetické zâření a část atmosféry bude ionizována.

Mgr. Štěpánka Kučková a Dr. Jan Mysliveček si všimli odporu prostředí. Mgr. Štěpánka Kučková tvrdí, že pokud bude hustota hélia $7 \times$ menší než hustota vzduchu, bude např. pef̂́ padat výrazně rychleji než ve vzduchu, nebot̉ odporová síla je přímo úměrná hustotě prostředí. Doplǔuji, že onu sedmkrát menší hustotu nám nic nezaručuje.

Dr. Jan Mysliveček předpovídá návrat k starým dobrým příručkám o aerodynamice. Autor rovně̃̌ vě̌̌t "znovuzrození výroby v leteckém průmyslu, nebof́ by mohla začít létat letadla". Mgr. Stěpánka Kučková však sází spíse na balóny a vzducholodě plněné horkým héliem, nebof letadla spotřebují přiliš mnoho cenného kyslíku (bez něj nemưže dojít k hơ̌̌ení). Poznamenáváme, 艾e takové oȟ̛ívání hélia by se značně̃ prodražilo.

Elektrické vodivosti si povšimla Jitka Krouželová - cituji: "... muselo by se vedení elektrického proudu pořádně zabezpečit nebo najít náhradu za el. proud, jinak by se naše planeta stala velkým elektricky nabitým tělesem - elek trárnou". Naše chabé představy o elektrárně jsou přece jen trochu jiné.

Mgr. Štěpánka Kučková vyjadř̌uje znepokojení nad rozdílem mezi permitivitou vzduchu a hélia (viz tabulku). Snî̌ila by se např. kapacita deskových kondenzátorủ. Některé elektrické pr̂ístroje by tudî̃ změnily své chování. Připomen̆me, že hélium je vodivé, kapacita deskových kondenzátorů by se tedy sní̌ila jeß̌tě mnohem rapidněji, než se snad autorka domnívala.

Bc. Kateřina Nováková uvádí zajímavy postřeh, že by došlo také k nasycení zemské kůry héliem.
Tolik stručny výčet vašich objevủ. Témě̌̌̌ v̌̌ichni autơ̌i pak připojili nễjaky filosoficky závěr (bohužel bez filosofického poučení). Citujme některé z nich.

Mgr. Štěpánka Kučková: "Nebylo by to vůbec k ̌̌ití. Dříve než by mơ̌ské f̌asy (kdyby přežily) stačily vyrobit trochu toho kyslíku, byl by konec. Nejspî́ bychom nevystačili s energií (tepelné elektrárny by byly kyůli velké spoty̌ebě O_{2} vyřazeny z provozu). Energii zbyvajících zdrojů bychom museli vynalơ̌it na vyrobu kyslíku a tepla, př̌ípadně k trvalému odstranňní vlezlého hélia, protože to umí projít i sklem."

Bc. Katě̌ina Nováková: "Lidé by byli rádi, že mají konečně nějakou atmosféru a adaptovali by se na ni."
Jitka Krouželová: "Konstruktor Trurl dal Zemi pởádnẽ zabrat svŷ́m novým vynálezem a jeho produkcí hélia. Lidé musí používat skafandry, ostatní živé organismy již nežijí. Země se stává pustinou. (Možná se však časem vyvinou organismy, které uzpůsobí své bun̆ky a metabolické funkce právě tomuto prostředí.) Bylo by zajímavé podívat se do této doby, ale žít bych v ní nechtěla."

Dr. Jan Mysliveček: "Asi nejvážnějsím dǔsledkem by byla žaloba, kterou by podalo OSN k meziplanetárnímu soudu na Saturnu. Důsledek této žaloby by byl, že by Trurla zavřeli na Slunci, které by díky pokusům zničil, as ním i veškerý život v naší Sluneční soustavě. Mezitím by stačil zkrachovat průmysl na vyrobu hélia." Dodáváme, že Saturn je z valné většiny plynný, neplynným soudcům by se na něm proto špatnĕ soudilo.

Dr. Daniel Klír: "Kapalné hélium by bylo zajímavěǰǐí - škoda. Bylo by lepší vyrobit $5 \cdot 10^{18} \mathrm{~kg}$ kapalného ${ }_{2}^{4} \mathrm{He}$ nebo aspon̆ ${ }_{2}^{3} \mathrm{He}$ (také supratekuté). To by pak byly teprv zajímavé jevy!"

Dr. Pavol Habuda: Vznik hélia

Nejprve odhadneme čas potřebny na výrobu hélia. Předpokládejme, že počet kopanců jednoho člověka za
 Stroj tedy chrlil hélium po dobu $\frac{10^{7}}{7} \mathrm{~s} \approx 16,5$ dne. Zjistěme nyní, za jakou dobu se vyrovnají tlaky na všech místech zeměkoule. Platí

$$
t=\frac{s}{v}=\frac{\pi R_{z}}{\sqrt{\frac{3 k T}{m_{H c}}}}=10,4 \mathrm{~s} .
$$

Zanedbali jsme přitom zakřivení Země, zemětřesení, blesky... Z předchozího vidíme, že tlak stoupal jen pozvolna s časem, všude stejně.

Dr. Pavol Habuda: Tlak na povrchu Země

Hmotnost atmosféry Země je přibližně $5,3 \cdot 10^{18} \mathrm{~kg}$, héliová atmosféra se tedy bude podobat vzdušné. Tlak jsem počítal metodou numerické integrace na počítači. Integrujme zdola až do vyšky 10000 km . Pro krok $d h=1 \mathrm{~m}$ je rozdíl dvou po sobě jdoucích hodnot tlaku maly. Položme

$$
d p=p+\frac{F}{S}=p+\frac{\kappa M_{Z} d m}{R_{Z}{ }^{2} S},
$$

kde κ je gravitační konstanta, M_{Z} hmotnost Země, R_{Z} poloměr Země, p tlak, $d m$ přírůstek hmotnosti hélia, $d p$ přirůstek tlaku.

Upravou

$$
d p=p\left(1+\frac{\kappa M_{Z} M_{H e}}{\left(R_{Z}+h\right)^{2} T}\right)
$$

kde $M_{H e}$ je molární hmotnost hélia, h aktuální vŷ̌̌ka atmosféry.

Chtěli bychom nyní spočítat teplotu T. K jejímu výpočtu si vezmeme na pomoc tepelnou křivku atmosféry. U země jsou dvě teplotní minima pod a nad ozónovou vrstvou. V héliové atmosfê̌re ozónová vrstva neexistuje, mư̌̌eme proto předpokládat exponenciální růst teploty. (Pozn. red.: autor pokračuje řadou vzorcủ, které však témĕr nekomentuje; proto je neotiskujeme.) Následující obrázky IV.6.1 a IV.6.2 znázorn̆ují teplotu coby funkcì vy̆šky ve vzdušné a héliové atmosfére.

Obr. IV.6.1: Vzdus̃ná atmosféra

Obr. IV.6.2: Héliová atmosféra

Dr. Pavol Habuda: Všeobecný dopad na atmosféru

Počasí bude velmi podobné současnému. Atmosféra však nebude obsahovat ozónovou vrstvu, proto bude nutné kupovat olověné skafandry na ochranu před kosmickým zářením. Atmosféra bude také sahat mnohem výše než dnes, proto se zvy̌íí hranice ionosféry. Díky tomu se zlepší příjem televizního signálu a radiových vln - budeme moci lépe sledovat televizi a poslouchat kvalitněji rádio a stanice z větší dálky. Ze stejného dủvodu budou častěji pozorovatelné polární zẩe na jih od pólu. Jestliže se při dnešní atmosfễe polární zâ̌̌e tvơ̛̂́ v oblasti nízko nad pólem, při héliové atmosféfée se budou tvơ̛it vŷ̌̌e nad pólem. Ionosféra je totiž nejvy̌̌̌íl vrstva atmosféry a polární zắr vzniká pouze v oblasti pólů. Pouze tam se dostatek částic dostane do oblasti, kde mư̌̌e ionizovat molekuly. (Např. na rovníku záře vzniknout nemư̌̌e, protože van Allenovy pásy prakticky vůbec nepropouštêjí nabité ćástice.)

Barva atmosféry je diskutabilní. Rozptyl závisí na velikosti částic, tuším, že na čtvrté mocnině vlnové délky. Podle tohoto rozptylu bude mít obloha tmavé modrou barvu.

Za určitý čas (f̌adovẽ $10^{6}-10^{8}$ let) se héliová atmosféra díky nízké hustotẽ vypaří do meziplanetárního prostoru.

Závěr

Jsme toho názoru, že nerož̌ešenǵch problémů zůstalo ještě mnoho. Héliová atmosféra je jednoduš̌í fyzikální model než at mosféra vzdušná, neboṭ se skládá z jediného, poměrně jednoduchého prvku. Proto byste měli být schopni f̛adu efektǔ předpovědět. Toto témaje pěkné také proto, že nemůžete opisovat žádnou existující literaturu - o héliovém obalu Země začnou fyzici psát až v době po Trurlově pokusu.

Náměty

Výrobu hélia správně upřesnil Dr. Pavol Habuda. Doplňme, že vznikající hélium mělo sympatickou teplotu 20°. Dále specifikujme, že nás zajímají především fyzikální důsledky Trurlova činu. Ostatní následky a důsledky jsou sice také zajímavé, ale přece jen, náplní tohoto časopisu by měla být hlavně matematika a fyzika.

Tolik na vysvětlenou. A nyní slíbený balíček nikoliv ekonomickŷch opatření, nỵbry̌ konkrétních námětů pro případ, že by vám snad došla fantazie:

1) Hlavním úkolem je zjistit, jaké množství plynného hélia se na Zemi skutečně udrží.
2) Bude se hélium v závislostì na čase oȟ̛̛ivat nebo chladnout? Jak rychle? Mư̌̌ěe se stát, že přejde do kapalného nebo nedejbože i pevného skupenství?
3) Má pravdu Dr. Pavol Habuda ve svém článku o závislosti teploty na vŷsce nad zemským povrchem?
4) Bude množství hélia pohlceného zemskou kůrou relevantní (nezanedbatelné)?
5) Vznikne nějaky koloběh hélia jako je tomu nap̌̌. s koloběhem vody? Vzniknou nějaké louže třeba "napršeného" hélia, na kterych by mohl Dr. Daniel Klír kromě pouštění lodiček zkoumat krásy supratekutosti?
6) Vzniknou nějaké mraky např. z vodních par? Pokud ano, jak asi vysoko?
7) Byla f̌eč o letecké dopravě. Zkuste navrhnout létající stroj, který by fungoval na jiném principu než raketa a unesl by deset osob za předpokladu, že hélium zǔstane plynné.
8) Zkuste se podrobněji zabŷvat otázkou mechanismu vzniku barev předmětů i oblohy.
9) Proč a jak se změní vŷska všech zvuků a "všichni budou mluvit jako hurvínci"?
10) Jak bude třeba upravit stupnice hudebních nástrojů?
11) Jak velký bude odpor hélia? Bude peřićcko padat pomaleji v současné atmosfễe nebo v té budoucí héliové?
12) Bude foukat vítr?
13) Změní se vy̌̌ka Slunce nad obzorem?

Doufám, že upřesněním zadání jsem již ted’ zajīstil tématu py̌ízeň mnoha miliónů řešitelǔ. Přesto opakuji, že vŷš vyjmenovaných otázek se nemusíte zdaleka držet. Mnohem zajímavější bude, když si budete různé otázky klást sami.

Téma 7 - MAGICKÃ ZRCADLA

Téma se setkalo s nebývalým ohlasem celého jednoho řex̌itele, Dr. Daniela Klíra. Ostatní vědátơ̌i se zdrželi svých příspěvkủ, někteří údajně dokonce zadání neporozumẽli. V tom případě nelze než dotyčným doporučit soustavnou četbu zadání tak dlouho, dokud ho nepochopí. (Algoritmus je triviální a důkladně odzkoušeny - jedná se o prostý while cyklus. Zájemcům zašleme vývojový diagram nebo děrny ̌̌títek.) Případným úspěsným f̌ě̌itelům tohoto nikterak nezajímavého tématu, kteří za nê̌j dostanou aspon̆ 10 bodǔ, budeme udílet zvláštní titul "promovany optik".

Vzhledem k tomu, že Dr. Daniel Klír nevy̛̌ě̌il zdaleka všechny problémy s danou oblastí optiky spojené, nemá smysl zveřejǐovat náměty nové. Jistě by však bylo ostudou, kdyby otázky položené v minulém čísle zŭstaly na věčné časy nerož̌ě̌eny.

Pokud vám připadá zadání přiliš složité, nemusíte se jej samož̌ejmě strik tně držet. Mưžete si vymyslet tisíce jiných, jednoduš̌̌ích příkladů deformovaných zobrazení rovinnými zrcadly. Inspirovati se mưžete třeba v Zrcadlovém bludišti y Praze na Petříně.

Dr. Daniel Klír: Magická zrcadla

(a) Pouze zak Y ivená zrcadla

Zformulujme nejprve základní princip, kterého budeme využívat pł̌i zobrazování geometrických útvarủ pomocí zrcadel.

Princip 1. Je-li zrcadlo vypuklé, zobrazovaný objekt se v přislušném rozměru zkrátí. Je-li zrcadlo vyduté, přislušný rozměr se prodlouži. Mějme zakřivené zrcadlo. Nechť nĕjaký řez jeho plochou je vypuklý a některý jeho řez je vydutý. Všechny vyduté řezy pak rozměry s nimi rovnobě̌̆né prodlužují, vypuklé řezy přislušné rozmĕry zkracují.

Příklady použití Klírova principu.

- Jednoduše uděláme ze čtverce kruh - a naopak - pomocí vypuklého resp. vydutého zrcadla - musí se však měnit poloměr křivosti tohoto zrcadla ($\mathrm{t} j$. není všude stejny).
- Různou kombinací mǔžeme dostat libovolné hruškovité tvary aj.
- Pravděpodobně lze zobrazit i čtverce na kosočtverec (stačí pouze vyduté zrcadlo - tím není myšleno zrcadlo se stálým poloměrem křivosti!) - viz obr. IV.7.1.

Méně snadná je rotace o 45° - musí se hodně měnit poloměr křivosti, ale teoreticky je tento problém řě̌itelny užitím principu 1 (viz obr. IV.7.2).

Bez zalomení pak pravděpodobně není možné zobrazit čtverec na tvar písmene X nebo Y - bude to problematické is vyǔ̌itím zalomených zrcadel.

Jednoduché je zobrazení čtverce na úsečku - ta ale nikdy nebude úsečkou v matematickém slova smyslu, nýbrž rovnou čarou o jisté nenulové tlouštce (jinak by stejně nebyla vidět). K tomuto zobrazení použijeme zrcadlo s konstantním poloměrem ǩ̛ivosti r v jednom směru a s poloměrem křivosti ∞ ve směru kolmém. Jeden rozměr se zkrátí, druhy zůstane zachován (viz obr. IV.7.3). Analogicky vytvoříme úsečku z kruhu.

Obr. IV.7.1

Obr. IV.7.2

Obr. IV.7.3
(b) i zalomená zrcadla

Pomocí zalomených zrcadel lze již zobrazovat navzájem libovolné rovinné útvary. Jen je třeba vymyslet jak. (Autor dodává, že by se zde hodila počítačová simulace. Souhlasíme. Pouze se podivujeme, že autor takovou simulaci neprovedl.)

Téma 8 -Číselné soustavy

Desítková soustava

Bc. Kateřina Nováková, Dr. Daniel Klír, Mgr. Štěpánka Kučková: Základní algoritmy

Tito autoři popsali známé školní algoritmy pro počítání v desítkové soustavě. Protože se však ty to základní znalosti probírají ve třetí třídě základní školy, nebudeme je otiskovat.

Mgr. Štěpánka Kučková: Za vším hledej Sumer
Kdo vymyslel počítání, nevíme, ale stâ̌í Sumerové jej považovali za vynález člověka na rozdíl od písma daru bohủ. S číselnými znaky se setkáváme již na nejstarších piktografických tabulkách, zprvu to byly jen prosté tečky a čárky, ale později byly uspơ̌ádány do soustav. V Sumeru se užívaly soustavy dvě: desítková a éedesátková, jejich kombinace umožn̆uje dělit celá čísla beze zbytku dvěma a třemi.

Uと̌ ve 2. tisíciletí pf̌. n. l. se v Mezopotámii používala tzv. poziční soustava - jedno číslo mǔže mít různou hodnotu podle svého umístění v komplexu číslic (vznik ̛̌ádủ). Na princip této poziční soustavy R̉ímané nepriišli!

První lidé, kteří objevili, že sčítání stejných čísel lze povy̌isit na násobení, byli rovně̌̌ Sumerové. Tento vynález doplnili pak počátkem 3. tisíciletí py̆. n. l. (ne-li ď̛ív) vynálezem dělení.

Vznik desetinné soustavy je ale připisován víceméně Indům. Ti na tuto soustavu přisisli také a navíc vy tvořili deset znaků pročíslice dnes označované jako arabské. Upevnění pozic arabskŷch číslic později pomohli Arabové jejich uと̌íváním.

Literatura. V. Zamarovský: Na počátku byl Sumer; J. Jilek: Dějepis.

Mgr. Štěpánka Kučková: Vlastnosti tělesa reálných čísel

Tato autorka popsala některé známé vlastnosti, které splňují reálná čísla, napǐ.
neutrální prvek vzhledem ke sčítání $\exists 0: 0+a=a$ a k násobení $\exists 1: 1 \cdot a=a$,
asociativita sčítání $a+(b+c)=(a+b)+c$ a násobení $a \cdot(b \cdot c)=(a \cdot b) \cdot c$,
. komutativita sčítání $a+b=b+a$ a násobení $a \cdot b=b \cdot a$,
distributivita násobení vzhledem ke sčítání $a \cdot(b+c)=a \cdot b+a \cdot c$,
existence inverzního prvku ke sčítání $\forall a: \exists(-a): a+(-a)=0$ a pro každé nenulové číslo i k násobení $\forall a, a \neq 0: \exists a^{-1}: a \cdot a^{-1}=1$.
Dále uvádí, že čísla se dělí na přirozená, celá, racionální, reálná a komplexní. Autorka se domnívá, že toto je vlastnost desítkové soustavy. To není přesné, nebof̃ všechny vŷse uvedené vlastnosti a rozdělení se týkají čísel jako takovych, ne jejich zápisu. At si vymyslíme jakoukoliv soustavu, vždy budou platit ty to axiomy a bude možno dělit čísla do skupin.

Autorka dále uvádí některé zajímavé algoritmy na zjednodušení počítání s čísly (např. malá násobilka podle počtu prstů na rukou ${ }^{1}$ nebo rychlejǒí počítání druhých mocnin čísel pomocí využití vzorce $(a+b)^{2}=a^{2}+2 a b+b^{2} \ldots$).

Dvojková soustava

Mgr. Aleš Přivětivý, Dr. Daniel Kltr, Prof. Tomáš Brauner: Základní početní operace

Počítání ve dvojkové soustavẽ je podobné jako počítání v soustavẽ desít kové. Je mnohem jednodušaí, nebof máme jen 2 cifry $\{0,1\}$ a tedy si musíme pamatovat menší tabulky (na sčítání či násobení).

Označme si čísla takto: $A=a_{k} a_{k-1} \ldots a_{2} a_{1} a_{0}$ (obvyklýzápis v poziční soustavê).
Sčítání se dá jednoduše popsat jako sečtení odpovídajících si cifer spolu s přenosem do vyšaího ̛̌adu. Sčítá se podle takto: $0+0=0,0+1=1+0=1,1+1=(1) 0$. Takto zpracujeme postupně všechny fíady od nejnižsího po nejvyšín. PY̌i sčítání více čísel sečteme všechny cifry daného řádu a pǐenos, výsledek podělíme dvěma, do výstupu zapíšeme zbytek po dělení a nový přenos bude celá část podílu. Př̌.: $10011+111=11010$.

Analogicky se v této soustavê odečítá. Aby tento proces byl konečný, je NUTNO, aby odečítané číslo bylo menší než to druhé. Zde mohou nastat záporné přenosy. Odečítá se takto: $0-0=0,1-0=1,1-1=0,0-1=(-1) 1$.

Poznámka redakce: Pokud bychom se dohodli, že kladné číslo má od jistého f̌ádu vy̌̌e samé nuly a záporné číslo naopak samé jedničky, je možno v této soustavě vyjádřit i čísla záporná. Udělá se to takto: od čísla odečteme 1 a prohodíme nuly a jedničky. Př̆.: $-11=\ldots 111101$. Dá se ukázat, že početní operace zůstanou správnými i pro tato čísla (zkuste si např. sečíst vy̧̌e uvedené $11+(-11)=11+(\ldots 111101)$. Např. odečítání mưžeme snadno realizovat jako sčítánís číslem vynásobeným (-1). Tento způsob zápisu čísel používají mj. i počítače. Jeho nevyhodou je, že záporná čísla nemají konečny zápis.

Násobení čísel snadno realizujeme, pokud máme k dispozici sccítání. Jedno z čísel násobíme postupně všemi ciframi čísla druhého, mezivýsledky posuneme o odpovídající počet f̌adů a pak je sečteme. V této soustavě je vŷodné, že se násobí bud cifrou 0 (pak je výsledek 0) nebo cifrou 1 (pak je výsledek stejny). Závěr tedy je, že nemusíme vůbec násobit, pouze sčítáme mezivy̧sledky. Pṛ̌.: $1101 \cdot 1011=1101+1101 x+0 x x+1101 x x x=10001111$.

Dělení čísel se provádí také podobně jako v desítkové soustavě. Dělitel si posuneme o tolik y̌ádủ doleva, aby jeho nejvyšíí cifra byla na stejném místě jako u dělence. Pak ho zkusíme odečíst od dělence. Je-li to možné, napîseme 1, jinak napíseme nula. Dělitel posuneme o žád níze a postup zopakujeme. Jakmile dojedeme na nejnižží řád, máme několik možností: vyjde-li zbytek 0 , dostali jome přesný podíl a mưžeme skončit. V opačném pǐípadě mưžeme
(A) vzít celočíselny podíl a skončit,
(B) pokračovat v dělení za desetinnou čárkou a pak
(a) nalézt periodu (protože zlomky jsou vždy periodické),
(b) číslo vhodně zaokrouhlit.

Umocňování mư̌̌̌eme provádět bud’opakovaným násobením (což bude py̌i výpočtu 3^{128} velice pomalé) nebo následujícím trikem. Při vý počtu 128 . mocniny není třeba počítat všechny mocniny ($1,2,3,4, \ldots, 128$), nám stačí

[^0]znát tu poslední. Nejkratší cesta k jejím u výpočtu je postupny výpočet $3^{1}, 3^{2}, 3^{4}, 3^{8}, \ldots, 3^{128}$, na což potřebujeme 7 násobení (pokaždé umocníme na druhou předchozí mezivýsledek). Tato finta se dá použít vždy, budeme postupovat takto:

Chceme-li vypočítat $z=x^{y}$, vyjádříme si y ve dvojkové soustavě. Do proměnné z uložíme 1 . Nyní pro každou cifru y od nejvy vždy ke správnému vy̆́sledku (zkuste si tento algoritmus představit nikoliv jako výpočet mocnin pomocí násobení ale jako výpočet násobení pomocí sčitání).

Po pochopení tohoto triku byste si mohli myslet, že tento postup vede vždy k nejrychlejšímu výpočtu výsledku. Ale intuice se často mylí, nejinak je tomu i v tomto případě. PY̌i výpočtu x^{15} potřebujeme tímto způsobem 6 násobení. Pokud si ale uvědomíme, že $x^{15}=\left(x^{5}\right)^{3}$, tak na postupnýy vypočet 5. a 3. mocniny potřebujeme pouhych 5 násobení. Kterýy postup je podle vás výhodněǰ̌í?

Soustava o základu -2

Jarmila Mulačová, Mgr. Aleš Přivětivý, Prof. Tomáš Brauner, Dr. Jan Mysliveč̌ek, Dr. Daniel Klitr, Bc. Ivana C̄apková: Základní početní operace

Již rozepsáním několika prvních čísel (podle binárního zápisu) v této soustavě je zřejmé, že pro člověka bude tento zápis naprosto nestravitelný. To však nijjak nebrání tomu, aby se s těmito čísly jednoduše počítalo.

Veškeré úvahy o přenosech do sudých a lichých ̛̌ádů mǔžeme obejít tak, že si čísla rozdělíme na skupiny po dvou a sčítáme je po těchto dvojicích. Snadno nahlédneme, že z vnêjǔ̌ího pohledu se tento zápis chová skoro jako čtyř̌ková soustava (po provedení součtu v dané dvojici cifer vypočítáme výsledek a přenos, který pak regulárně pričteme k další dvojici). Tabulka součtů bude tato

00	00	00	00	01	01	01	10	10	11
00	01	10	11	01	10	11	10	11	11
00	01	10	11	$(1) 10$	11	00	$(11) 00$	$(11) 01$	10

Pro prakticky výpočet je nutno si zapamatovat, že $-1=11$, takže vznikne-li nám přenos 11, je vhodné uvážit, nemáme-li radši použít přenos -1 . Pokud bychom se fixovali na jeden typ přenosu, snadno se nám stane, že nám budou vycházet pořád přenosy až do nekonečna (cifry výsledku budou samé nuly a přenosy pořád ne a ne se zastavit - zkuste si napřiklad sečíst 11 a 1).

Touto úvahou jsme ale úplně obešli vlastnosti této soustavy a nepochopili jsme plně princip sčítání. PY̌i bliž̌ím prozkoumání zjistíme, že vŷpočet probíhá stejně jako u dvojkové soustavy až na jedinou výjimku - přenosy do vyš̌ího řádu se před předáním vynásobí (-1). Je to logické, nebot my chceme, aby se nějaky přenos z naší operace
 V této soustavě se ale znaménka řádủ střídají, takže přenos musíme vynásobit (-1).

Analogicky v této soustavě i odčítáme. Počítáme stejně jako ve dvojkové soustavě, ale případny záporny přenos (-1) vezmeme jako kladny přenos 1 .

Násobení se provádí ÚPLNĚ stejně, rozdíl ve výpočtu se projeví v tom, že použijeme mínus dvojkové sčítání místo dvojkového. Speciálním případem je násobení (-1), což znamená násobeni 11 (tedy v této soustavě̃ se ($-x$) počítá složitěji než v dvojkové soustavě).

Dr. Jan Mysliveček: Dělení v (-2)-soustavě

Na první pohled si člověk možná pomyslí, že bylo-li násobení stejné jako ve dvojkové soustavě, bude tomu i u dělení. Zde nás intuice opět zklame. Kámen úrazu je v odečtení čisla. Ve dvojkové soustavě zjistíme jednoduše porovnáním odpovídajících si cifer, je-li možno číslo odečíst (a máli se zapsat 0 nebo 1). Poté číslo odečteme a dělenec má aspon̆ o cifru méně.

Tady nic podobného pravděpodobně nefunguje. Pouhé zjištění, zda je možno číslo odečíst, zde nejspî̌ nemá smysl, nebot např. k tomu, abychom dostali -4 , musíme nejprve odečíst 8 a pak teprve přičíst 4 , což je v přímém rozporus výse uvedenou metodou.

Složitou ale schůdnou cestu navrhl Dr. Jan Mysliveček. Nebudeme se starat o nêjaké zmenšování dělence a postupné psaní jednotlivých cifer podílu. Prostě posuneme dělitel tak, aby jeho nejvyšsí cifra splývalas cifrou dělence a odečteme ho. Na zvláštní papír si budeme dělat poznámky, kde jsme co odečetli (připísieme tam 10000...000-
podle daného řádu). Vznikne nám mezivýsledek, který mưže mít obecně víc cifer než ten předchozí, ale my na to nebudeme hledět a budeme odčítat dál a dál, dokud nedostaneme v dělenci číslo s menším počtem cifer než v děliteli. To pak prohlásíme za zbytek po dělení a podíl bude součet všech čísel na vedlejším poznámkovém papíre.

Aby se situace vyjasnila, zkuste si vypočítat podíl $-35 /-1$ neboli 101101/011. Svůj výpočet porovnejte s tabulkou:

dělenec cifra podílu	
101101	
-11000	
11010101	1000
analogicky dále	
10101	1000000
1101001	100
1001	100000
1011	10
110101	10
101	10000
11010	1
10	1000
11	1
0	1

Součet čísel $1+1+1+10+10+100+1000+1111000=11001111$, což je ky̌̌ených 35.
Je vidět, že je tento postup není dokonalý a je na vás, abyste navrhli jeho vylepšení.
Dr. Jan Mysliveček: Hledání kơ̌enů funkcí
Autor se zabývá hledáním kơ̌ene funkce $f(x)=x^{2}-2$, tedy čísla $\pm \sqrt{2}$. Navrhuje k tomu použít tento postup: odhadneme si nějak kơ̆en, např. číslem $x_{0}=1$. Chceme-li najít přesnêjǒí odhad, dosadíme jej do funkce: $0=f(x+\Delta x)=(x+\Delta x)^{2}-2=x^{2}+2 x \Delta x+(\Delta x)^{2}-2$. Předpokládáme-li, že náš odhad je dostatečně přesný, tj. Δx je malé, můžeme zanedbat člen $(\Delta x)^{2}$. Dostaneme tak, $\Delta x=\frac{2-x^{2}}{2 x}$. Nyní jsme našli lepší odhad kořene funkce a to $x_{1}=x_{0}+\Delta x=x_{0}+\frac{2 / x_{0}-x_{0}}{2}=\frac{x_{0}+2 / x_{0}}{2}$.

Tímto autor končí, nezaby vá se diskusí o tom, zda tato posloupnost čísel skutečně konverguje ke kơ̌enu funkce. ${ }^{2}$ Pravdou je, že objevil jednu z používaných metod na hledání kơ̌enů funkce, tzv. Newtonovu metodu, která obecně využívá vztahu $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$, což je v naprostém souladu s uvedeným vzorcem. Poznamenejme ještě, と̌e tato posloupnost konverguje ke kơ̆enu skutečně velice rychle.

Autor dále rozebírá tento postup v mínus dvojkové soustavě, což však z pochopitelných dủ vodủ nepřetiskujeme (nejedná se o novou operaci, pouze o posloupnost již použitých operací). Posloupností těchto operací mưžeme vyjáď̛ìt mnohé funkce, napł̌. $\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$.

Zatím ně̛ešenou otázkou je výpočet druhé odmocniny přímo - viděl jsem kdysi postup, ktery se podobal dělení a který podobně druhou odmocninu počítal. Pokud o něm někdo něco ví, necht jej publikuje, bude nás to velice zajímat (nemusí to být ani v exotických soustavách, stačí i soustava desítková).

Soustava o základu $\sqrt{2} \cdot$ i

Bc. Ivana Čapková, Dr. Daniel Klír, Prof. Tomáš Brauner: Porovnánís (-2)-soustavou
Tato na první pohled hrůzně vypadající soustava je docela jednoduchá, známe-li již mínus dvojkovou sou-

[^1]stavu. Rozepíšeme-li si prvních několik řádủ dostaneme

yad hodnota	
0	1
1	$\sqrt{2} \cdot \mathrm{i}$
2	-2
3	$\sqrt{2}^{3} \cdot \mathrm{i}^{3}=-2 \cdot \sqrt{2} \cdot i$
\vdots	\vdots

a hned nás napadne, že na sudých f̌ádech jsou čísla reálná a na řádech lichých čísla imaginární. Ba co víc, tato čísla jsou zapsána v mínus dvojkové soustavě!
Z toho okamžitě plyne, jak se v této soustavě sčítá a odčítá: vezmeme si liché cifry zvláş́ a provedeme s nimi požadovanou operaci. To stejné provedeme i se sudymi ciframi.

Násobení se bude dělat také jako ve dvojkové soustavě: vybereme si jedno ze dvou čísel a to budeme postupně násobit všemi ciframi čísla druhého a mezivýsledky posunuté o příslušny počet y̌ádủ budeme sčítat. I zde to dá správny výsledek (důkaz je jednoduchý, využijeme distributivního zákona a toho, že násobení mocninou základu soustavy odpovídá posunu o odpovídající počet f̌ádů).

Nev ̧hodou této soustavy je to, že číslo i má nekonečny binární rozvoj (umíme jednoduše vyjádřit $\sqrt{2}$. i, ale ne i).

Unární soustava

Dr. Daniel Klir, Prof. Tomáš Brauner: Počítánís kamínky

Nevŷhodou této soustavy je nepohodlný zápis velkých čísel. Algoritmy na výpočty jsou však nesmírnê jednoduché.

Sečtení dvou čísel odpovídá spojení dvou hromádek kamenủ. Odečtení odpovídá vyčleněním daného počtu kamenủ z dané hromádky.

Násobení snadno realizujeme skládáním kamínkủ do mṛ̛̂̌ky $m \times n$ (délky stran mṛ̛̂̌ky snadno zjistíme naskládáním všech kamenủ v hromádce za sebe). Dělení také není nic obtî̌ného, pouze zkusíme z dané hromádky odebrat dany počet kamenǔ. Pokud se nám to podaří, uchováme si jeden kamínek a zkoušíme to znovu. Počet uchovaných kamínků je roven celočíselnému podílu a zbylé kameny na hromádce zbytku po dělení.

Poznámka redakce: Elegantní je také celočíselná druhá odmocnina. Odebírajíce kameny z hromádky skládáme čím dál věť̌í čtverce $(1 \times 1,2 \times 2,3 \times 3, \ldots)$. To uděláme snadno tak, že ke dvěma sousedním hranám původního čtverce přidáme po jednom kamínku. Ǎ̌ nám kamínky dojdou, strana čtverce je celočíselná odmocnina a snadno zjistíme i zbytek. Takto snadno vypočítáme i třetí odmocninu (pokud jdou kamínky skládat na sebe), s vy̌̌sími odmocninami bychom uと̌ asi měli problémy vzhledem k dimenzi prostoru, ve kterém žẏjeme.

Římská soustava

Dr. Daniel Klír, Prof. Tomáš Brauner: Fuj!

Oba autoři se vzácně shodují, že tato soustava je naprosto nevhodná pro zápis čísel, o počítání raději ani nemluvě.

Dr. Daniel Klír se sice pokusil něco málo naznačit, ale byly to jenom konkrétní protipříklady ukazující, jak nerozumné výsledky nám mohou vyjít (nap̌̌. MCXVI-X=MCVI, ale $\mathrm{M}-\mathrm{X}=\mathrm{XM}, \mathrm{M}-\mathrm{DC}=\mathrm{CD} .$. .).

Polyadické soustavy
Prof. Tomáš Brauner: Vyjádření čísel a počítání s nimi
Zvolme si základ soustavy z (přirozené číslo). Při zápisu čísel budeme používat cifer $0,1, \ldots,(z-1)$. Každé číslo vyjádříme ve tvaru ($\ldots+a_{2} z^{2}+a_{1} z+a_{0}+a_{-1} / z+a_{-2} / z^{2}+\ldots$). Před číslo mưžeme ještě připsat znaménko "-" podle toho, zda je číslo záporné. Dále uvažujme pouze celá čísla.

Zápis čísla v této soustavě získáme tímto algoritmem: $a_{i}:=x \bmod z, x:=x$ div z. Na počátku je $i=0$ a po každém dělení se jeho hodnota zvy̌íl Takto počítáme jednotlivé cifry, dokud je $x \neq 0$. Vyjáde̛ení čísel v polyadické soustavě je jednoznačné. K důkazu využijeme znalosti nerovnosti $\left|\sum_{i} x_{i}\right| \leq \sum_{i}\left|x_{i}\right|$.

Necht $\sum_{k=0}^{m} a_{k} z^{k}=x=\sum_{k=0}^{n} b_{k} z^{k}$. Je-li $m \neq n$, bez újmy na obecnosti necht $m<n$. Platí ale $x \leq \sum_{k=0}^{m}(z-$ 1) $z^{k}=(z-1) \sum_{k=0}^{m} z^{k}=(z-1) \cdot \frac{z^{m+1}-1}{z-1}=z^{m+1}-1$, což je spor. Takže musí platit $m=n$. Neché $a_{n} \neq b_{n}$. $\mathrm{Z} a_{k}, b_{k} \in\{0,1, \ldots, z-1\}$ plyne $\left|a_{k}-b_{k}\right| \in\{0,1, \ldots, z-1\}$, tj. odečtením dostaneme $z^{n}\left(b_{k}-a_{k}\right)=\sum_{k=0}^{n-1}\left(a_{k}-b_{k}\right) z^{k}$, ale platí $\left|z^{n}\left(b_{k}-a_{k}\right)\right| \geq z^{n}>z^{n}-1=(z-1) \cdot \frac{z^{n}-1}{z-1}=\sum_{k=0}^{n-1}(z-1) z^{k} \geq \sum_{k=0}^{n-1}\left|a_{k}-b_{k}\right| \cdot z^{k} \geq\left|\sum_{k=0}^{n-1}\left(a_{k}-b_{k}\right) z^{k}\right|$, což je spor. Odtud plyne $a_{n}=b_{n}$. Dále postupujeme indukcí, dostaneme, že $\forall i: a_{i}=b_{i}$.

Speciálními případy této soustavy jsou již zmíněná desít ková a dvojková soustava.
Prof. Tomáš Brauner: Vyjádření v (-2)-soustavě
Díky nerovnosti $1+2+2^{2}+\ldots+2^{k}=2^{k+1}-1<2^{k+1}$ se dá ze zápisu čísla ihned rozhodnout, je-li kladné nebo záporné (podle toho, je-li nejvyš̌̌í řád sudy nebo lichŷ). Největší možné číslo je pak to, ve kterém jsou na sudých místech jedničky, jinak všude samé nuly. Tedy největší $(2 n+1)$-ciferné číslo je $1+2^{2}+2^{4}+\ldots+2^{2 n}=\frac{2^{2 n+2}-1}{2^{2}-1}=$ $\frac{1}{3}\left(2^{2 n+2}-1\right)$, analogicky nejmenší možné $(2 n+1)$-ciferné číslo je $\frac{1}{3}\left(2^{2 n}-1\right)+1$.

Stejným postupem jako u normálních polyadických soustav i zde mư̌̌eme lehce dokázat jednoznačnost vyjádǐení čísel.

Další náměty

Potěšilo mne, že soustavu o základu $\sqrt{2} \cdot \mathrm{i}$ jste rozlouskli. Mám pro vás další ořišek, tentokrát o něco těžší. Zkuste vymyslet, jak by se počítalo v soustavě o základu (i-1). Velice zajímavý je i graf vyznačující body, které lze vyjádřit částečnŷm rozvojem např. 10 binárních cifer. Vůbec to není čtvercová síĺ, jak by se mnozí mohli domnívat.

Daľ̌í velice zajímavou soustavou je vyvážená trojková soustava. Je to soustava o základu 3, ale nepoužívá cifer $\{0,1,2\}$, ny̆bry̌ $\{-1,0,1\}$. Toto nepatrné vylepšení maximálně zjednoduší všechny početní operace. Zkuste vymyslet převod z trojkové soustavy do vyvážené trojkové soustavy a porovnat zápisy přirozených čísel s rekreační úlohou číslo 2 (vážení 1-40 gramŭ).

Námětem pro hlub̌̌í zamy̌̌lení by se mohl stát zápis čísel v nepravidelné číselné soustavě, kde je každá cifrav jiné soustavě. Tento na první pohled nesmyslný příklad nalezl překvapivě velkého využití v praxi - počítání sekund, minut, hodin, dnǔ, týdnŭ, měsícủ a rokủ. Zkuste vymyslet převod z/do této soustavy, a to jak celé, tak zlomkové ćásti (pozor, každá se převádí trochu jinak).

Z jiného soudku je počítání modulární arit metikou. Uved̉me trochu matematické teorie:
Vyberme si nějaké prvočílo p a počítejme v okruhu Z_{P}, tzn. ve zbytkových třídách podle modulu p. Budeme používat pouze čísla $0,1, \ldots,(p-1)$. Pokud přì počítání přetečeme, vezmeme zbytek po dělení p, např. $2+2 \equiv 1$ $(\bmod 3)$ nebo $2^{-1} \equiv 3(\bmod 5)$, protože $2 \cdot 3 \equiv 1(\bmod 5)$. Dá se snadno dokázat, že tento okruh je tělesem, tzn. mimo samozřejmou komutativitu, asociativitu a neutrální prvek vzhledem k násobení existuje ke každému nenulovému prvku i prvek k němu inverzní. Dá se dokázat, že $a^{-1} \equiv a^{p-2}(\bmod p$), protože podle malé Fermatovy véty platí $a^{p-1} \equiv 1 \quad(\bmod p)$.

Pokud nepřetečeme (výsledky operací budou mezi 0 a $p-1$) a výsledkem dělení nebude necelé číslo, tak výsledky aritmetických operací modulo p budou stejné jako u normálních algoritmů. To nám nemusí připadat moc výhodné. Tato výhoda se projeví v okamžiku, kdy začneme počítat s více moduly:

Vybereme si několik prvočísel $p_{1}, p_{2}, \ldots, p_{k}$. Dané číslo x si vyjádříme moduly $x_{1}, x_{2}, \ldots, x_{k}$, kde $x_{i}=$ x mod p_{i}. Podle Cónské zbytkové věty se dá dokázat fundamentální tvrzení: toto vyjádření je jednoznačné. Přesněji ̛̌ečeno, možných zbytků je $P=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$ a pro každé A jsou čísla $A, A+1, \ldots,(A+P-1)$ jednoznačně přiřazena všem moz̆ným zbytkům. Zkuste si tuto větu dokázat, není těžká.

Takže pokud si číslo od 0 do $P-1$ (které může být VELMI velké) nejprve převedeme do zbytkových tříd,
tak mǔžeme místo operací s velkými čísly počítat ZVLÅŠŤ s každým zbytkem. Na koncì jednotlivé zbytky zase převedeme na číslo (zkuste vymyslet jak) a máme výsledek. Výhodou je, že operace s malými čísly jsou rychlejší a operace s jednotlivými zbytky mǔ̌̌eme provádět paralelně (nap̌̌. několika procesory najednou). Velkou nevýhodou je nemožnost detekce přetečení (v jednotlivých modulech to bude př̌tékat skoro pờád, ale to nevadí, hlavně kdy̌̌ nepřeteče celkový výsledek z intervalu $0,1, \ldots,(P-1)$) a porovnávání čísel (snadno nahlédneme, že porovnávat jednotlivé zbytky není správné řešení). Pokud žádný z těchto dvou nedostatků není podstatný, muže být tento postup tím pravým řešením.

Zkusme si to ukázat na pr̂íkladu:

1. $P=2 \cdot 3 \cdot 5=30$,
2. $x=4=(0,1,4), y=7=(1,1,2)$,
3. $x+y=(0+1,1+1,4+2)=(1,2,1)=11$,
4. $x \cdot y=(0 \cdot 1,1 \cdot 1,4 \cdot 2)=(0,1,3)=28$,
5. $28 / y=(0 / 1,1 / 1,3 / 2)=(0,1,4)=4$.

Ưloha 7 - Průtrž novin

Úloha byla velmi triviální. Témě̌̌ všichni ji bez problémů vy̌̌̌ě̌ili, proto mư̌̌eme autorské ̛̌ešení hodně zestručnit.

Před pádem má kulička v bodě A vzhledem k novinám potenciální energii $m g h_{1}$, která se přemění (při zanedbání odporu vzduchu) celá na kinetickou energii $\frac{1}{2} m v_{1}^{2}$, již má kulička tě̌nně před dopadem na noviny.

Ze zákona zachování energie je $m g h_{1}=\frac{1}{2} m v_{1}^{2}$, tedy rychlost dopadu na noviny je $v_{1}=\sqrt{2 g h_{1}}$. Protože $v_{1}=g t_{1}$ (volný pád), máme dobu pádu $t_{1} \vee$ prvním úseku délky h_{1} :

$$
t_{1}=\sqrt{\frac{2 h_{1}}{g}}
$$

Předpokládejme, že energie ΔE, potřebná na deformaci a protržení novin se předá okamžitě. Z novin kulička vyletí rychlostí v_{2}. Pro pohyb po dráze h_{2} platí

$$
h_{2}=v_{2} t_{2}+\frac{1}{2} g t_{2}^{2}
$$

odkud

$$
v_{2}=\frac{h_{2}-\frac{1}{2} g t_{2}^{2}}{t_{2}}
$$

kde $t_{2}=t-t_{1}$.
Dosadme za $t_{2}=t-t_{1}=t-\sqrt{\frac{2 h_{1}}{g}}$:

$$
v_{2}=\frac{h_{2}-\frac{1}{2} g\left(t-\sqrt{\frac{2 h_{1}}{g}}\right)^{2}}{t-\sqrt{2 h_{1}} g} .
$$

Hledaná práce spoť̌ebovaná na průtř̌ je rovna úbytku kinetické energie kuličky v bodě B, kde kulička prolétává novinami:

$$
\Delta E=\frac{1}{2} m\left(v_{1}^{2}-v_{2}^{2}\right)=\frac{1}{2} m\left(2 g h_{1}-\left[\frac{2 h_{2}-g\left(t-\sqrt{\frac{2 h_{1}}{g}}\right)^{2}}{2\left(t-\sqrt{\frac{2 h_{1}}{g}}\right)}\right]^{2}\right) .
$$

Upravit tento vztah do nějaké hezčí podoby se nám už asi nepovede. Je to tedy konečné řešení.

Úloha 8 - Sluníčka

Dříve než se pustíme do řešení na kvantitativní úrovni, musíme se vypořádat s několika problémy. Vêtšinou se nikdo z f̌ě̌itelŭ nezabyval (nebo je pouze zmínil bez podrobnějǒí analyzy).

- Jak vypadá absorbce záření látkou? Není zcela samozřejmé, jak všichni řešitelé mlčky předpokládali, že všechno záření procházející látkou je pohlceno. Pouze velké rozměry planet jsou toho dostatečnou zárukou.
- Došlo by k značným destrukcím planety tlakem záření.
- Planeta by byla odsouvána tlakem zǎrení, takže obdržená energie by s časem klesala (planeta se zřejmě neroztaví najednou).
- Vêť̌ina planet má již značnou část svého objemu v tekutém a plynném stavu.
- Náhlé objevení se antisluníčka by ovlivnilo dráhy těles naší sluneční soustavy. Dráhy všech planet by se razantním zpŭsobem změnily (jak, to záleží na dráze antisluníčka) a pravděpodobně by bud’ skončily v jednom ze sluníček, nebo by se jejich dráha k nim natolik přiblǐ̌ila, že by došlo k jejich znatelnému ohřátí, popřípadě roztrhání slapovými silami. Ke katastrofě by tedy pravděpodobně došlo jex̌tě před anihilací. Kdo máte doma počítač, mǔžete se pokusit nasimulovat tuto vesmírnou katast rofu, její závěry (diskutované a doplněné popisem simulace) odměníme speciálním bonusem.

Celkový vliv těchto jevů bude takový, že planetičky dopadnou ještě hưĭ̀e, než kdybychom tyto jevy neuvažovali.

Abychom byli vůbec schopni něco spočítat, musíme učinit jisté zjednodušující předpoklady, které však výsledek výrazněji neovlivní, nebot̉ provádíme pouze Ǐádový odhad:

- Energie se vyzárí v podobě γ-záření okamžitě̌. Ve skutečnosti by byly částice a antičástice od sebe vzdalovány tlakem záření.
- Nedojde k zastínění planety jinyým tělesem (ostatně to je vzhledem k "místním" poměrům velice nepravděpodobné) a nedochází k pohlcování zâ̌̌ení meziplanetární hmotou (to mưžeme s klidným svědomím zanedbat).
- Energie se vyzârí ve všech směrech rovnoměrně. To by zajísté také nebyla pravda, nebof̉ situace není dostatečně symetrická. (Tvrzení, že máme-li symetrickou soustavu, jsou všechny probíhající děje symetrické, plyne z tzv. materialistického postulátu: Všechny fyzikální jevy maĵ́ pưvod v materiálních objektech. ${ }^{3}$ Pak tedy netvrdíme nic jiného, než že je-li symetrická příčina, je symetricky její důsledek.)
- Měrná tepelná kapacita není zdaleka v celém rozsahu teplot a tlaků konstantní. Mưžeme však použít horního odhadu její velikosti na daném rozsahu.

Při anihilaci se (za předpokladů vy̌̌e uvedených) uvolní energie

$$
E_{u}=M_{\odot} c^{2}+M_{\urcorner \odot} c^{2}=2 M_{\odot} c^{2},
$$

kde M_{\odot} je hmotnost sluníčka, $M_{\neg \odot}$ je hmotnost antisluníčka a \boldsymbol{c} je rychlost světla.

> Planetička obdrží energii

$$
E_{o}=E_{u} \frac{\pi r^{2}}{4 \pi R^{2}}
$$

kde r je poloměr planetičky a R je její vzdálenost od sluníčka. (πr^{2} je plocha kotoučku planety, $4 \pi R^{2}$ povrch koule o poloměru R.)

Teplo potřebné k roztavení látky je

$$
Q_{L}=m\left(l_{t}+c \Delta T\right)
$$

kde m je hmotnost daně látky, l_{t} je její měrné skupenské teplo tání, c^{*} je (průměrná) měrná tepelná kapacita a ΔT je rozdíl teploty tání a původní teploty.

[^2]Za teplo Q potřebné k roztavení planetičky berme maximum z tepel potřebných k roztavení jednotlivých látek, ze kterych je složena.

$$
Q=M\left(l_{t}+c \Delta T\right)=\frac{4}{3} \pi r^{3} \rho\left(l_{t}+c \Delta T\right)
$$

kde ρ je hustota a M je hmotnost planety.
Aby došlo k roztavení planetičky, musí tedy platit

$$
\begin{aligned}
E_{0} & \geq Q \\
2 M_{\odot} c^{2} \frac{r^{2}}{4 R^{2}} & \geq \frac{4}{3} \pi r^{3} \rho\left(l_{t}+c \Delta T\right) \\
\frac{M_{\odot} c^{2}}{8 R^{2}} & \geq \frac{\pi r \rho\left(l_{t}+c \Delta T\right)}{3}
\end{aligned}
$$

Tabulkové hodnoty jsou:

- měrná tepelná kapacita: $100 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} . \mathrm{K}^{-1}$. (maximální je pro H_{2}; bereme ohled na to, že její velikost není konstantní),
- měrné skupenské teplo tání: $100 \mathrm{MJ.kg}{ }^{-1} . \mathrm{K}^{-1}$ (horní odhad),
- teplota tání: 4000 K (max. hodnota),
- počáteční teplota: 0 K (min. hodnota),
- poloměr planety: 71000 km (maximální - Jupiter),
- vzdálenost planety: $40 \mathrm{AU}=6.10^{12} \mathrm{~km}$ (maximální - Pluto),
- hustota planety: $5500 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ (maximální - Zemẽ).

Po dosazení těchto vysoce přeceněných hodnot dojdeme k závěru, že celkově vychází opravdu levá strana nerovnice věť̌í, a proto za vy̌̌e uvedených předpokladŭ dojde k roztavení celé sluneční soustavičky.

Úloha nekonečno - Psychologie

Témě̌̌ všichni ̛̌ě̌itelé nám poslali nějaké číslo. Bohužel musím konstatovat, že něktě̛í z nich nepochopili, co je to přirozené číslo, a tak nám posílali čísla tvaru $-x / 0$, kde $x=1$ apod. My jsme všechna čísla přebrali (a pochopili po svém), přetřídili a sestavili z nich tuto tabulku:

Jak vidno, mnoho ̛̌ě̌itelủ se mylně domnívalo, že jedničku nenapíše nikdo jing. Dále se jich více shodlo na několika malých číslech a vyhrála docela vysoká sedmička. Podle mého názoru bylo napsání čísel větsích než 20 strategickou chybou, protože tolik ani nemáme aktivních ̛̌ě̌itelů. I kdyby každy z nich napsal různé číslo, stejně se čísla 22 nebo 29 velmi pravdépodobně umístí na posledních místech.

Uloha 9 - Souměrnosti

$\mathcal{V}_{\text {erš líbezný, verš lahodící, }}$ vašemu sluchu libě znicí, verš dokonaly jako rým, rým, jı̈mž budete oslněni vic nežli svazkem laserovým, rým, nad který už lepší není, verš, jenž si vaši přizzeň ziská a pozornost si bdělou nutí, strnete v němém užasnutí, jak s matikou se múza tř̌̌ská!
$\mathscr{D}_{\text {ilu }}$ je vtastní ryzost stylu, verš připomíná zlatou žillu v jalové skale pustých vět. Takové dílo jen básník umi odvážnou strofou k cíli spět (laskavý čtenář porozumí). Jak moudrá a přec skromná slova z paprsků svatojánských jen upředla tiše jako sen básnická střeva autorova!
$\overparen{O}_{\text {bratime list. Dle definice }}$ (která nám jistě poví více ve správném znění přednesena), těleso je oblast prostoru uzav̛̛ená a omezená. Později dojdem ke sporu. Bud T téleso libovolné, souměmé podle středů dvou navzájem různých. Úmluvou S_{1}, S_{2} pro ně zvolme
\mathscr{Z}_{e} skvostů nas̆i abecedy. Máme už označeré středy. Dîk výše psané definici (inu, jdem na to od lesa) existuje X_{M} splinujüci, že X_{M} je prokem tělesa, a navíc skrz naskrz télesem každičké X z T spľ̆uje, $\check{z e}\left|S_{1} X\right|$ menš̌̌ je neb rovno $\left|S_{1} X_{M}\right|$.
$\mathscr{O}_{\text {rasátko už̌i, kdo se posti. }}$
X_{M} v středové souměrnosti
dle středu S_{1} zobrazime
do bodu X_{M}^{*}.
(I dalš̌í kroky budou př̌mé
jak tupý úder paličkou.)
Z bodi X_{M}, X_{M}^{*}
označme A ten, který jesti
od S_{2} dál (máme-li štěstí
a oba stejně vzdáleny jsou,
$\mathcal{N}_{\text {echť a je libovolný z nich). }}$.
Pro bližši bod ze jmen barvitých
vyberme B. Pak v souměrnosti
středové podle S_{2} středu
zobrazme bod A po libosti
do bodu A'. Vykoledu-
jeme si dále vztah dost prostý:
$\left|A S_{2}\right|+\left|B S_{2}\right|$
je ostře větší než $|B A|$
z trojúhelnikové nerovnosti.
$\mathscr{T}_{\text {äž nerovnost je zodpovědná }}$ za to, že délka $\left|A S_{1}\right|$
je ostře menš̌í nežli délka
úsečky $\overline{A S_{2}}$ (kde však
bere se tato znalost velká?
Podrobně: z obrázku náš zrak
vyčte $|B A|$ že rouno jest
$2\left|A S_{2}\right|, a$ pak téz
$\left|B S_{2}\right|$ mens̆i rouno než
$\left|A S_{2}\right|$. Na mou skromnou čest.)
$\mathscr{S}_{\text {yni už } k \text { svému konci spěje }}$ náš dưkaz - dîlo beznadéje
(však beznadëjně dokonalé).
$\left|A A^{\prime}\right|$ (jaképak divy)
je rovno $2\left|A S_{2}\right|$. Ale
předchozí sloky nápěv tklivý
nám oznamuje nerovnici:
${ }_{2}\left|A S_{1}\right|$ je ostře méně
než $2\left|A S_{2}\right|$ zaručeně.
Spor odhalí už ba i spící.

Y̌̌imněme si - eh - ejhle - ouha že $\overline{A A^{\prime}}$ je moc dlowhá úsečka na to, aby smèla vejut se do koule opsané télesu T (ta koule celá má střed S_{1}). Ne, ach ne, to nejde, a v tom je ten spor, který jsme jasnozřivě našli. Kdo nepochopils, hod si mašli, a necht̀ sežere tě skvor!

Slušelo by se ještě řicí poznámku: pokud v definici tělesa výše uvedené dva požadavky uberete - omezenost a nota bene i uzavřenost (ó div se světe) -, pak obdrž̌̌te "tělesa" dle nekonečně mnoha středů souměrmá - dáme vám nápovědu, ať vaše mysl neklesá.

Občane, vědče, zanech stesků, थขažuj nekonečnou desku!
Představ si prostor, rovinu a rouru nekonečnou.
(Jestli se mýlim, at̀ zahynu a spadnu v marnost věčnou!)
Uvaž též nekonečnou mřižz.
(Martin Krsek už šilhá hlady, vymýšli dalši předpoklady, však půlnoc blizko jüž.)

- Watfyzák jásá. Všechno zřejmé.

Nyní se s chutí posmivejme řešitelům, co ztroskotali ve vlastnich bludech: kyškyš-heč!
Chechtací pytlikk je nám malý a Martin smíchy ztratil řeč.

Zadání dalších témat

Poněvadž na minule zadaná témata nebyl ještě publikován dostatečný počet vědeckých článkủ, rozhodla se naše rada, že nová témata nebude vypisovat.

Zadání rekreačních úloh

Úloha 10. Pouštní šilenství

S podobnou úlohou jste se již určitě alespoň jednou setkali - kdyと̌ ne na olympiádě na základní škole, tak přinejmenším v nějakém ǩ̌í̌̌ovkâł̌ském magazínu.

V následujícím součtu nahrad’te každé písmenko právě jednou číslicí z množiny $\{0,1,2, \ldots, 9\}$ tak, aby součet platil a žádná dvě písmena nebyla nahrazena stejnou číslicí.

$$
\begin{array}{r}
\text { SAHARA } \\
\text { SAHARA } \\
\text { FATA } \\
\hline \text { ORGANA }
\end{array}
$$

Úloha 11. Princeznička

Princeznička P se zhlǐ̌̌í v rovinném zrcadle Z, jehož rovina R svírá se svislou stěnou S úhel $\alpha=20^{\circ}$ (viz obrázek O). Určéte délku x zrcadla Z, aby se v něm princeznička P celá viděla. Princeznina jasnost máa vy̌ku $h=1.8 \mathrm{~m}$. Vy̌sku čela Či od očí $O_{\check{c}}$ zanedbejte. Vzdálenost zrcadla Z od princezniny jasné hlavy H je $a=3 \mathrm{~m}$. Úlohu řešte nejdříve obecně, potom prozadané hodnoty.

Úloha 12. Parnik

Po otev̌̌ení obálky na vás kromě opravených témat a nového čísla M\&M vypadl také papírovy parník. Vaším úkolem je vypočítat přesnou polohu jeho tě̌ziště, je-li plavidlo ve "slisovaném", tj. totálně rozplacatělém stavu.

Až to budete mít, tak řekněte, jestli rozšifricním postavy tak, aby parník stabilně stál na vodorovné rovině komíny vzhůru, posunete jeho tě̌iš̌tě nahoru nebo dolů.

C.	Jméno	Třída	\sum_{-1}	T1 T4	Tx	T6		R7	R8	R9	$\sum_{0} \sum_{1}$
1.	Dr. Pavol Habuda	$3 . \mathrm{B}$	64	18	12	5		5	5	5	5095
2.	Dr. Daniel Klír	GPoděb 4.B	122	3	3	3	3	5	5	4	$26 \quad 82$
3.	Prof. Tomás Brauner	GMorKr 4.B	219	1			7	5	5	5	$23 \quad 73$
4.	Dr. Jan Mysliveček	GKJB 2.A	51			2	6	5	5	5	$28 \quad 52$
5.	Mgr. Ale ${ }^{\text {S }}$ Prívětivy	GPard 4.?	30			3	4	5	3	5	$20 \quad 50$
6.	Mgr. Jan Holeček	GKJB 2.A	40	1				5			$6 \quad 46$
7.	Mgr. Milena Svobodová	?	33					5		5	$10 \quad 43$
8.	Mgr. Štěpánka Kučková	GArab 3.E	24			4	3	5		5	$17 \quad 41$
9.	Dr. Ondřej Přibyla	?	70								034
10.	Dr. Jan Fátor	?	59								$0 \quad 33$
11.	Bc. Vlastimil Kǐápek	GBrno 4.C	19					5	4	4	$13 \quad 32$
12.	Bc. Ivana Capková	SPŠE 4.B	18	5	0		2	5		1	$13 \quad 31$
13.-14.	Mgr. Jaroslav Jánsky	GKJB 2.A	30								$0 \quad 30$
	Dr. David Holec	GKJB 2.A	59					2			$2 \quad 30$
15.	Dr. Jitka Spoustová	?	52					5		1	$6 \quad 28$
16.	Mgr. Jiří Lísal	Gymn 4.A	21					5		1	$6 \quad 27$
17.	Mgr. Milan Orlita	GUhHra ?.A	25								$0 \quad 25$
18.	Bc. Andrej Pavlík	GTrenč 1.r	18								018
19.	Jarmila Mulačová	GMIB	5			,	2	5	3	0	1116
20.	Bc. Kateřina Nováková	GMnich	10			1	1	1		1	414
21.	Jitka Krouželová	septima B	8			1		0		0	19
22.	Mgr. Jix̂í Roubínek	GŽdár 4.A	48								08
23.	Petra Habrovanská	?	2							0	06
24.	Ondǐej Škoda	?	4								$0 \quad 4$

Poznámka redakce: Tx znamená sjednocení bodủ za T 5 a T 7 .
Mimỡádných 5 bodů za úlohu R_{∞} získal Dr. Jan Mysliveček.

Uzávěrka dalšího čísla je 26. května 1997.

POZOR! Adresa semináře je:
Robert Špalek - B1507, VŠK 17. listopadu, Pátkova 3, 18200 Praha 8, Libeň

[^0]: ${ }^{1}$ podle čeho si asi člověk vybral zrovna desítkovou soustavu?

[^1]: ${ }^{2}$ a to je jedině dobře, nebof toho budete mít dost na vysoké škole

[^2]: 3 Tento postulát vlastně vymezuje obor fyzikálního zkoumání. Fyzika se vždy kromě popisu jevu snaží i o jeho zdůvodnění theorí́, na jejímž základě předpoví daľ̌í jevy, které pak experimentálně ově̌̌uje. Případné jevy nemající materiální původ (napǐ. existence bóží) nezapadají do rámce fyzikálního obrazu světa - jejich důsledky nejsou experimentálnẽ ovễ̛itelné.

