M\&M číslo 3 ročník III

Vážení dopisovatelé našeho časopisu,

velice se vám omlouváme za minulé číslo $M \& M$, které obsahovalo nesmírné množství chyb hlavně tiskových. Především se omlouváme autorům obrázků; obzvlášt nepovedené kousky jsme nakreslili znovu a otiskujeme je v lepším provedení hned za tímto úvodníkem.

Dále vě̌̌íme, že díky delší časové prodlevě, která od vydání posledního čísla uplynula, nezanevřete na náš semináx̆, ny̆bry̌ se na něj budete tím víc tě̌̌it. My vám za to slibujeme, že se pokusíme, aby doba tisku čísel přístích byla více dohledná a dohlednêjǒí.

A ted jedna radostná informace. Ve dnech 16.-22. června asi bude soustředění v Dědově pod Ostašem (ve východních Čechách). Zatím bychom rádi vědẽli, kdo by se chtěl zúčastnit. Sdělte nám to proto pokud možno co nejdY̌ív.

Oprava obrázků z minulého čísla

Vezměte si do ruky číslo 2 časopisu (nedopatřením je na něm napsáno "číslo 1"). Následující obrázky jsou otištěny v pơ̆adí, v jakém byly uspơ̆ádány ve druhém čísle. Pouze obrázek na str. 4 první nahơ̌e neotiskujeme znovu, protože je srozumitelny. Ostatní obrázky až do str. 11 jsou opraveny.

Téma 1 - TROSEČNÍCI

Coriolisova síla

Bc. Jǐ̛̌̌ Lísal, Bc. Milan Orlita, Dr. Daniel Klitr: Af̃ ̌̌ije zemská rotace!

Coriolisova síla působí na těleso pohybující se v rotujících vztažných soustavách, mezi něž patưí také naše planeta. Tato síla se projevuje výrazněji jen u dlouhodobých pohybů, nebở je relativně malá. Na severní polokouli nás tato síla odklání vždy doprava: na těleso pohybující se na severní polokouliz jihu na sever pǔsobí síla na východ, na těleso smě̌̌ující ze severu na jih působí síla na západ.

Byla učiněna mnohá pozorování důsledků Coriolisovy síly: pohyb f̌ek (či např. Golfského proudu), ̛̌eky tekoucí ze severu na jih na severní polokouli mají pravy břeh více vymletý; efekt je údajně patrný i na dvoukolejných tratích, kde vlaky jezdí po jedné koleji pouze jedním směrem: pravá kolejnice je pak na severní polokouli opotřebovanęj̧íí. Také cyklony rotují na severní polokouli proti směru hodinových ručiček.

Pro Coriolisovu sílu platí $\vec{F}_{c}=-2 m \vec{\omega} \times \vec{v}$, její velikost je $F_{c}=2 m v \omega \sin \beta$, kde \vec{v} je rychlost tělesa, $\vec{\omega}$ úhlová rychlost rotace (soustavy - např. Země) a β je úhel, který svírají vektory \vec{v} a $\vec{\omega}$. Směr síly F_{c} je určen pravidlem pravé ruky: položíme-li prsty pravé ruky ve směru otáčení od vektoru $\vec{v} \mathrm{k}$ vektoru \vec{w}, pak vychyleny palec ukazuje směr Coriolisovy síly \vec{F}_{c}.

Pohybuje-li se těleso ve směru poledníků, působí na nę̌j síla o velikosti $F_{c}=2 m \psi_{\mathrm{w}} \sin \varphi$ na severní polokouli doprava, na jižní doleva (viz předchozí pravidlo). Na rovníku je $\varphi=0$, tedy je zde i $F_{c}=0 \mathrm{~N}$. (Viz obr.CORIOL_1.mf.)

Umíme-li ně̌jak zmê̌it velikost a směr Coriolisovy síly, pak umíme také stanovit jednoznačně svoji zemẽpisnou šrư̌̌ku, nebof̉ sin je na $\langle 0, \pi\rangle$ prostá funkce a severní polokouli od jižní odisisíme díky směru síly.

Stačí tedy potom vyjádřit $\varphi=\arcsin \frac{F_{c}}{2 m v \omega}$, kde $\omega=\frac{\pi}{43082^{2}} \mathrm{rad} \cdot \mathrm{s}^{-1}$.

Bc. Milan Orlita uvádí způsob, jak určit pomocí Coriolisovy síly polokouli: na severní polokouli je voda přitékající do víru stáčena Coriolisovou silou doprava, tedy dle obr.CORIOL2.mf se vír točí doleva.

Na jižní polokouli je tomu naopak, vír se otáčí doprava, protože Coriolisova síla stáčí vodu doleva. Autor navrhuje provést větší množství pokusủ a zjistit, který směr rotace víru převažuje (nebot̉ je mnoho náhodných jevů, které mohou účinky Coriolisovy síly přehlušit - (třeba vlnobití ve vaně - pozn. red.)). Mgr. Jan Mysliveček se oproti Milanu Ortitovi domnívá, že na severní polokouli by voda z vany tvơ̌ila vír točící se po směru hodinových ručiček. Je tedy na vás, kterému z vědců budete více věrit.

Dr. Daniel Klír s použitím literatury spočetl odchylku, jakou by zaznamenalo volně padající těleso z vy̆̃ky h nad Zemí vlivem Coriolisovy síly. Podrobné řešení této úlohy naleznete v literaruře [1].
Z bodu A ve vỵ̂ce h nad Zemí padá těleso (obr.CORIOL_3.mf).

Ve směru osy x (obr.CORIOL_4.mf) působí zrychlení $a_{x}=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}$, a platí pohybová rovnice (pro pohyb ve směru osy x):

$$
m \cdot \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=2 m \omega v^{\prime} \sin \alpha
$$

kde z obr.CORIOL_3.mf máme $\sin \alpha=\sin \left(90^{\circ}+\varphi\right)=\cos \varphi$.
Tedy

$$
\frac{\mathbf{d} v_{x}}{\mathbf{d} t}=2 \omega v^{\prime} \cos \varphi
$$

kde přibližně platí $v^{\prime}=g t$.
Rešením diferenciální rovnice je $v_{x}=\omega g t^{2} \cos \varphi+C_{1}$, kde z počáteční podmínky $v_{x}(0 \mathrm{~s})=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ máme $C_{1}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

Dalsí integrací dostaneme

$$
x=\frac{1}{3} \omega g t^{3} \cos \varphi
$$

pľičemž $h-y=\frac{1}{2} g t^{2}$, tedy

$$
t=\sqrt{\frac{2(h-y)}{g}} .
$$

Dosazením máme

$$
x=\frac{1}{3} \omega g\left(\frac{2(h-y)}{g}\right)^{\frac{3}{2}} \cos \varphi
$$

odtud snadno

$$
\cos \varphi=\frac{3 x}{\omega g\left(\frac{2(h-y)}{g}\right)^{\frac{3}{2}}}
$$

kam dosadíme $x=x_{o d c h}$. (vodorovná odchylka tělesa dopadnuvšího na zem, způsobená Coriolisovou silou), $y=0 \mathrm{~m}$ (těleso je po dopadu v nulové vyšce nad povrchem zemskym). Obdržíme

$$
\cos \varphi=\frac{3 x_{o d_{c h} .}}{\omega g\left(\frac{2 h}{g}\right)^{\frac{3}{2}}} .
$$

Tím je φ určeno. Polokouli pak určíme ze směru odchylky.

Kyvadlo pana Foucaulta

Bc. Milan Orlita, Dr. Daniel Klír, Mgr. Pavol Habuda: Zamyšlení víceméně historické aneb pan Foucault měl problémy...

Roku 1851 zavěsil pan Foucault v kopuli pařížského Pantheonu kyvadlo. Aby nedocházelo k přílišnému tlumení kyvů, použil Foucault místo hmotného bodu kouli o hmotnosti 30 kg a místo nehmotného závěsu lano o délce 67 m . Po př̌epálení vlákna, které drželo kyvadlo ve vychylené poloze, se kyvadlo rozkývalo, a po určité době bylo možné pozorovat odchylku od původní roviny kyvu. Po deľ̌í době bylo možné zjistit, že se rovina ky vu stáčí ve smyslu otáčení hodinových ručiček, díváme-li se na ky vadlo shora (tedy ve smyslu denního pohybu Slunce od východu přes jih k západu)(viz obr.FOUCLT_1.mf).

Kdyby pan Foucault pokus prováděl na severním pólu, činilo by stočení roviny kyvu za den právể 360°.

Naopak, na rovníku by bylo toto stočení nulové.

FOUCLT_1.mf

Dr. Daniel Klír, Prof. Matouš Jirák: Kterak tanec kyvadla zvaného Foucaultovo objasniti

Postavme kyvadlo ponejprv na pólu. Podíváme-li se na situaci z inerciální vztažné soustavy, uvidíme, že kyvadlo nemění v naší inerciální soustavě svoji rovinu kyvu. Zeměkoule se pod ním otočí za přibližně̌ 24 hodin. Pozorovatel v neinerciální soustavě spojené se Zemí bude na severním pólu bedlivŷm pohledem ze stavebního jeřabu pozorovat, kterak hmotný bod stáčí rovinu kyvu po směru hodinovych ručiček. Tvrdíme nyní, že kdyと̌ postavíme kyvadlo v libovolné existující zeměpisné sirirce (vyjma rovníkové), bude toto kyvadlo také stáčeti rovinu kyvu, leč s jinou periodou. Tvrdíme, že úhel stočení α za jeden den závisí na zem. žî̌̌ce φ podle vztahu $\alpha=360^{\circ} \cdot \sin \varphi$.

Nyní vám předvedeme jednu úvahu, jak se dá tento vztah odvodit (řešení kolegy Klíra bylo poněkud neúplné, proto jsem je upravil, nikoliv však principielnĕ). Podobnou úvahu naleznete tễ v literatuře [2].

Předpokládejme, že kyvadlo v poloze 1 kýve na obr.FOUCLT_3.mf ve směru poledníku. Pohlǐ̌̌ejme na problém z inerciální soustavy cizí vesmírné civilizace (anebo ze soustavy nějaké beznadějně rovnoměrně přímočã̛e se vzdalující sovětské družice). V této inerciální soustavě zachovává kyvadlo rovinu kyvu. Za krátký čas Δt se Země otočí o úhel $\omega \Delta t$. Kyvadlo se tak ocitne v poloze 2. Má-li kyvadlo pro pozorovatele na Zemi úhlovou rychlost ω^{\prime}, pak za čas Δt pootočí se rovina kyvu pro pozemštana o $\omega^{\prime} \Delta t$. Pro malé Δt pak mǔ̌̌eme vyjádřit délku dráhy mezi polohami 1 a 2 jako

$$
l=\omega \Delta t \cdot a .
$$

Z rovnobě̆̌̌nosti roviny kyvu v poloze 1 a 2 mư̌̌eme úhel $\omega^{\prime} \Delta t$ přenést k bodu X (viz obr. FOUCLT_3.mf). Délku oblouku l ted můžeme vyjádřit druhým zpŭsobem:

$$
t=\omega^{\prime} \Delta t \cdot b .
$$

Pro malé Δt mají oblouky skutečně skoro stejnou délku. Máme tedy

$$
\begin{equation*}
l=\omega \Delta t \cdot a=\omega^{\prime} \Delta t \cdot b . \tag{0}
\end{equation*}
$$

Snadno dále nahlédneme $\frac{a}{b}=\sin \varphi$, odkud plyne

$$
a=b \cdot \sin \varphi .
$$

Rešením soustavy (\circ), (∞) je $\omega^{\prime}=\omega \cdot \sin \varphi$, $\operatorname{což}$ opravdu pro Foucaultovo kyvadlo platí.
Toto vysvětlení však není správně. Když má rovina kyvu zǔstat vzhledem k mimozemské inerciální soustavě nezměněna, měla by po 24 hodinách nastat identická situace. Ale perioda 24 hodin je, jak řečeno, pouze na pólech.

Kde je chyba? Kdo ji správně odhalí a připojí rádné zdůvodnění, získá nějaké body navíc.

Poznámka. Správný vztah lze korektně získat např. studováním kyvadla v pozemské neinerciální vztažné soustavé. Takové řešení je ovšem o dost delší - otisknout jej nelze; mohu si jej však případně připravit na soustředění.

Mgr. Pavol Habuda: Jiné odvození

Z obrázku FOUCLT_4.mf vidíme, že úhlová rychlost Země $\vec{\omega}$ se dá rozložit na složky ω_{1}, ω_{2}. Složka ω_{2} je kompenzována upevněním závěsu kyvadla. Podle obr.FOUCLT_4.mf je $\omega_{1}=\omega \sin \varphi$, kde φ je skutečná zeměpisná šị̛̌ka. Po násobení časem dostaneme $\alpha_{1}=\alpha \sin \varphi$, kde α_{1} je úhel, o který se otočilo kyvadlo, α je úhel, o ktery se za tyy̌ čas otočila Země. Kyvadlo se na severní polokouli stáćí proti pohybu hodinových ručiek, na jižní naopak.
(Poznámka redaktora: zde rovně̌̌ doporučujeme vědecké obci diskutovat o korektnosti ̛̌ešení problému kyvadla.)

Chvála magnetismu

Mgr. Pavol Habuda: Zǎ̌ízení na mêření magnetického pole Země

Magnetické pole Země je velmi slabé ($B=44 \mu \mathrm{~T}$). K jeho mě̌̌ení použijeme kruhovy závit. Bud musíme závitem rotovat velmi rychle, nebo místo něj užít cívku s velky̆m počtem N závitù. Na závitu se vlivem magnetického pole indukuje napětí

$$
U_{M A X}=\frac{-d \Phi}{d t}=-B_{M A X} \pi R^{2} N \omega \sin \omega t
$$

kde R je poloměr závitu a $B_{M A X}$ je max. velikost magnetické indukce ve směru kolmém na osu otáčení. PY̌ístroj uvádíme v rotaci mechanicky. Jestlǐ̌e se napětí harmonicky mění, mưžeme k jeho měrení použít střídavy voltmetr, kde pro hodnotu efektivního napětí platí

$$
U_{E F}=\frac{U_{M A X} \sqrt{2}}{2} .
$$

Ke změ̌̌ení směru magnetické indukce pouy̌ijeme metodu mêrení velikostí tří na sebe kolmých vektorů. Vektorově tyto ṭ̛i vektory sečteme a získáme směr magnetické indukce, vektor smě̌ujuící k magnetickému pólu. Rozdíl mezi SZP a SMP pólem je maximálně 7°, pokud tedy nejsme v blízkosti pólu, dá se metoda použít na určení směru sever-jih.

Severní magnetický pól má soư̌adnice $\varphi=77^{\circ}, \lambda=102^{\circ} z . d$.

Z obr.MAGNET_1.mf vidíme, že v oblasti pólủ je magnetická inklinace (sklon magnetky) poměrně velká. Možná by se někdo mohl pokusit určit závislost inklinace na vzdálenosti od magnetického pólu.

Bc. Milan Orlita: Indukce a složky
Magnetickou indukci můžeme v každém místě povrchu Země rozložit do složek dle obr.MAGNET 2.mf.
Zemi mư̌̌eme považovat za magneticky dipól; zjednodušíme-li ho na geocentrický souosý dipol, pak magnetická deklinace $\delta=0$, magnetická indukce má pak pouze složky H (horizontální) a Z (vertikální). Potom pro složky magnetické indukce platí

$$
\begin{aligned}
& H=\frac{\mu_{0}}{4 \pi} \frac{m}{R^{3}} \cos \varphi, \\
& Z=\frac{\mu_{0}}{4 \pi} \frac{2 m}{R^{3}} \sin \varphi,
\end{aligned}
$$

kde φ je zeměpisná šírǐka, R je poloměr Země, a

$$
m=\frac{4}{3} \pi R^{3} \cdot M
$$

kde M je celková magnetizace Země. Změ̌̌ením bud’ vertikální nebo horizontální složky vektoru magnetické indukce by se při znalosti celkové magnetizace Země M dala určit zeměpisná zîríka. Pro co nejpřesnêjší měření by bylo výhodné změ̌̌it obě složky v různých místech ostrova. Porovnáním výsledkủ by se snad dala eliminovat chyba zpǔsobená lokálními magnetickými anomáliemi.

Zářivý tok

Dr. Daniel Klír: Mêření zạ́̂ivého toku

Solární konstantu S položme rovnu podílu záři vého výkonu Slunce (asi $3,8 \cdot 10^{26} \mathrm{~W}$) a plochy koule o poloměru 1 AU (plochy $\left.4 \pi(1 \mathrm{AU})^{2}\right)$, odtud $S \approx 1330 \mathrm{~W} \cdot \mathrm{~m}^{-2}$. Zanedbejme změnu vzdálenosti Země od Slunce během roku. Změ̌̌íme-li hustotu zářivého toku dopadajícího na $1 \mathrm{~m}^{2}$ zemského povrchu, měl by nám vyjít výsledek stejny nebo menší než solární konstanta.

Dle obr.ZARENI_1.mf uvažme polohy 1 a 2 . V poloze 1 bude výsledek přibližně roven solární konstantě. V obecné poloze 2 pro úhel Ψ je $J_{e}=S \cdot \sin \Psi$, kde J_{e} je hustota zárívého toku na $1 \mathrm{~m}^{2}$. Odtud $\sin \Psi=\frac{J_{c}}{S}$, kde S je solární konstanta. Abychom z úhlu Ψ dostali ze měpisnou šířku φ, bude nutno ještě uvažovat datum; tímto vztahem φ a Ψ se autor dále nezabyval.

Astronomická pozorování

Mgr. Jan Fátor py̌ipomíná, že vŷ̌ka Polárky nad obzorem není přesně rovna zeměpisné sířce, protože deklinace Polárky je $\delta=89^{\circ} 15^{\prime}$. Jest nutno to uvážit, chceme-li získat polohu s přesností na minuty.

Mgr. Jan Fátor také vyjadřuje jistou pochybnost o přesnosti pozorování hvězd, které se "taktak ukázou" nad obzorem, neboṭ u obzoru je poměrně velká refrakce; polohu takové hvězdy lze určìt s malou přesností - majitelům dobrých dalekohledů autor doporučuje provést pozorování têchto hvězd a vý̛sledek porovnat s tabulkami.

Mgr. Pavol Habuda: Mě̌̌ení zeměpisné délky pomocí zatmění

"Podle Dr. Daniela Klíra se dá k určování zeměpisné šǐ̌̌ky použít zatmění Slunce. Zatmění Měsíce použít nemůžeme, nebot tento úkaz je stejný pro všechna místa zeměkoule. Mění se pouze azimutální soữadnice Mĕsíce, které lze použít k výpočtu zeměpisných soư̌adnic i bez zatmění."

Dále Mgr. Pavol Habuda uvádí metodu, kterou konzultoval s ředitelem hvězdárny v Žilině. "Na fotografický film nafotíme sluneční zatmění (obr.ZATMENI_1.mf). Pomocí py̌ímky $A B$ určíme okamžik prvního a druhého kontaktu (okamžik pryního kontaktu je čas, kdy se kotouč Měsíce poprvé dotkne Slunce; okamžik druhého kontaktu je čas, kdy se ho dotŷkat přestane. Tento postup platí pro částečné zatmění Slunce.) Když pomocí nebeské mechaniky určíme polohu těles na nebeské sfễe, získáme kružnici pro první kontakt, obdobně krǔ̌nici i pro druhy (obr.ZATMENI_2.mf).

Metoda určení přesného času kontaktů je následující. Předpokládejme, že posun Měsíce přes sluneční disk je rovnoměrný. Pro několik poloh přímky $A B$ určíme přesně časy kontaktů. Souřadnice polohy kontaktů opravíme o refrakci, probíhá-li zatmění nízko nad obzorem. Ze vztahủ mezi polohou objektǔ na obloze (tj. azimutem a vyškou hvězdy) a zem. soư̆adnicemi dostaneme f̌ešením složitých rovnic dvě místa na Zemi s přesností y̌ádově km (záleží na přesnostì přístrojư). Jednoznačně polohu můžeme určit teprve pomocí např. maximální fáze zatmění, což je poměr mezi zastíněnou plochou a plochou celého disku. Jiná metoda je užít velikost úhlu θ mezi prvním a druhým kontaktem."

Máme-li možnost pozorovat úplné zatmění, potom máme k dispozici dva kontakty navíc. Rě̌ení pak tedy bude jednoznačné. Stejně jednoznačné bude i př̀i prstencovém zatmění Slunce.

Mgr. Pavol Habuda: Měsíc jako srpek

Srpek vznikly zatměním Měsíce vypadá ze všech míst Země stejně, a tedy nám žádnou informaci o naší
poloze dát nemưže.

Všimněme si proto radęji jiného jevu. Předpokláajejme, že Země, Měsíc a Slunce leží v jedné rovině (max. odchylka je 4.1°. Srpek Měsíce ukazuje směrem na jih. Uváźme-li libraci v délce $6^{\circ}-7^{\circ}$, potom bude srpek ukazovat bud' k severnímu nebo k jižnímu bodu. Při opravě o zmíněné faktory bude metoda pravděpodobně poměrně přesná.

Mgr. Pavol Habuda: Šaty a délka dne
Položme na plẵ̌ šaty. Když svítá, změ̌íme čas t_{1}, kdy je poprvé uvidíme, a večer čas t_{2}, kdy je vidět přestaneme. Položme $\Delta t=t_{2}-t_{1}$. Pro hodinový úhel t v okamžiku východu i západu Slunce platí $\cos t=-\tan \varphi \cdot \tan \delta$ kde δ je deklinace Slunce. Platí $\cos (t+\Delta t)=\cos t$, odtud $\tan t=\frac{1-\cos \Delta t}{\sin \Delta t}$. Za rok pobytu na ostrově zjistíme maximální a minimální dobu Δt.

$$
\begin{array}{llll}
\Delta t=M A X: & \tan t_{1}=\frac{1-\cos \Delta t_{1}}{\sin \Delta t_{1}} & \& & \cos t_{1}=-\tan \varphi \cdot \tan (\delta+\epsilon), \text { kde } \epsilon \text { je sklon ekliptiky k rovníku } 23.5^{\circ} . \\
\Delta t=M I N: & \tan t_{2}=\frac{1-\cos \Delta t_{2}}{\sin \Delta t_{2}} & \& & \cos t_{2}=-\tan \varphi \cdot \tan (\delta-\epsilon), \quad \epsilon=23.5^{\circ} .
\end{array}
$$

Slaná voda

Dr. D. Klír, Bc. M. Orlita, Mgr. J. Mysliveček, J. Krouželová, K. Nováková: Sůl nad zlato.. .

Autoři se vzácně shodují, že ze slanosti vody se toho moc neurčí. Salinita je totiž ovlivněna př̂́lǐ̌ mnoha faktory, které mohou měrení zcela znehodnotit. Mezi tyto vlivy patří kupříkladu moî̀ské proudy, vývèry spodní vody, blízkost ústí řeky nebo větǐího města, jakož i znečištění. Je však pravdou, že v místech s vysokym výparem je salinita větší, proto např. v Atlantiku slanost směrem od rovníku klesá, jak lze zjistit z mapy. Závislost salinity na poloze však ani zdaleka není funkce prostá. Bohužel musíme spolu s Milanem Orlitou cynicky konstatovat, že i zde určíme v nejlepším případě jen to, co poznáme podle výskytu palem nebo jiné vegetace.

Připomínky a komentáře

Mgr. Pavol Habuda: Poznámka ke gravitačnímu zrychlení

Mgr. Pavol Habuda upozorňuje na nepřesnost v článku Prof. T. Braunera a Dr. D. Klíra z minulého čísla M\&M (literatura [3]). Připomínám, že článek se tŷkal mě̌̌ení velikosti tíhového zrychlení a bylo v něm navrženo mě̛ení g matematickým kyvadlem.

Mgr. Pavol Habuda zpracoval grafy z literatury [4] a dostal tuto tabulku vztahu mezi max. rozdílem grav. zrychlení $d g$ a zeměpisnou šířkou φ :

zemépisná šíčka $\varphi\left[{ }^{\circ}\right]$	-60	-45	-30	0	30	45	60
max. rozdíl grav. zrychlení $d g\left[m \cdot s^{-2}\right]$	$6 \cdot 10^{-4}$	$6 \cdot 10^{-4}$	$5.5 \cdot 10^{-4}$	$11 \cdot 10^{-4}$	$4 \cdot 10^{-4}$	$5.5 \cdot 10^{-4}$	$7 \cdot 10^{-4}$

Kdybychom chtěli kyvadlem mě̌it takto malé rozdíly tíhových zrychlení, jejichž relativní odchylka je $\delta_{M A X}=1,1 \cdot 10^{-2} \%$, potom $\delta_{l} \cdot \delta_{T}$ je také maximálně $1,1 \cdot 10^{-2} \%$. Přesnost této metody je taková, že ji spln̆uje nap̌̌̌. hodnota $l=1.000 \mathrm{~m}$ a $T=2 \pm 0.2 s$. Tato hodnota je ještě̌ poměrně dobře mě̌itelná. Avšak museli bychom použít velmi přesné přístroje. Kdyby byla poblíz kyvadla skála ($\varrho=3000 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, vysoká 300 m a pomalu klesající do vnitrozemí - autor viděl v dobrodrǔ̌ném filmu), potom $\delta_{g}=6 \cdot 10^{-4} \mathrm{~m} \cdot \mathrm{~s}^{-2}$. Odchylku autor počítalz gravitačního zákona, skálu aproximoval koulí vzdálenou 1 km .

Odchylky jsou způsobeny nerovnoměrným rozdělením hmoty Země. Proto vztahy v citovaném článku je treba opravit o tuto hodnotu, chceme-li byt presní.

Mgr. Jan Mysliveček: Global Position System

Je to zay̌ízení k určování zeměpisné šířky i délky. Jak funguje? Vysílací část vyšle signál, ktery pokrývá celou oblohu, tedy nikam nemírí. Hustota pokrytí oběžné dráhy družicemi je již tak vysoká, že signál zachytí aspoñ tři družice a odrazí jej zpět. Z přijatých signálů je možné vypočítat zeměpisnou polohu.

Náměty

Tak teoretické náměty mě už žádné nenapadly. Ale co kdybyste zkusili taky trochu experimentovat ??? Aspoň byste si mohli ověrit, jak dalece jsou některé vámi či vašimi kolegy navržené metody praktické anebo naopak šílené. Mưj skromny odhad je, že těch nepraktických bude víc.

Literatura

[1] Z.Ungermann: Matematika a řešení fyzikálních úloh, SPN Praha 1990.
[2] Horák, Krupka: Fyzika, SNTL $1961 \pm$ 5let.
[3] M\&M, číslo 2, ročník III., str. 1 - 3 .
[4] Milan Burša, Karel Peč: Tíhové pole a geodynamika Země, str.106, 114, 115.

Téma 2 - HRÁCH

Mgr. Pavol Habuda: Další uspơ̌ádán

"Uvažme strukturu hrachǔ nakreslenou na obr.HRACH_7.mf.

Nechte poloměr hrachu $r \ll a$, kde a je hrana krychle z úvodní úlohy. Objem kvádru na obr.HRACH_7.mf je $V_{K}=2 r \cdot 2 r \cdot 2 r \sqrt{3}$. V každém rohu kvádru má str̛̀ed jedna kulička, každá přispívá osminou svého objemu. Navíc jsou do k vádru vnơ̌eny polovinou svého objemu dvě daľ̌í kuličky. Tedy hrách v kvádru zabírá objem

$$
V_{O}=\frac{2}{2} \frac{4}{3} \pi r^{3}+\frac{8}{8} \frac{4}{3} \pi r^{3}=\frac{8}{3} \pi r^{3} .
$$

Položme

$$
p=\frac{V_{O}}{V_{K}}=\frac{\pi r^{3} \frac{8}{3}}{8 \sqrt{3} r^{3}}=\frac{\pi}{3 \sqrt{3}}=\frac{\pi \sqrt{3}}{9} .
$$

Čím je p větší, tím víc kuliček hrachu se vejde do daného tělesa. Domnívám se, že za podmínky $r \ll a$ je mǔj způsob nejvŷhodnêjǰ̌í" Do krychle z úvodní úlohy autor tímto způsobem uvěznil 8771 hrachǔ.

Mgr. Jan Fafor: Hrách v praxi
Autor zakoupil balíček zeleného jedlého hrachu a jal se experimentovat. Do válcové nádoby s rozměry $v=83 \mathrm{~mm}$ (vy̧̆̆ka válce), $d=79 \mathrm{~mm}$ (prŭměr válce) nasypal py̌̌esně po okraj hrách. Vešlo se mu tam přesně 1266 hrachư. Poté vybral náhodně 20 hrachů a změ̌̌il jejuich náhodně vy braný průměr - nejprve uvážil, že má smysl takovou veličinu počítat, uvážil té̌̌ zjevnou šišatost hrachu. Tabulku průměrů s prominutím autora neotiskujeme z technických důvodů, pouze uvedeme výsledek: průměrny objem jednoho hrachu je $V_{P} \approx 214 \mathrm{~mm}^{3}$. Laskavy čtenár nahlédne, že objem nádoby byl $V \approx 407000 \mathrm{~mm}^{3}$, a tedy objem připadající na jednu kuličku $V_{1}=\frac{V}{1266} \approx 321 \mathrm{~mm}^{3}$. Odtud procento zaplnění prostoru použitého válce je

$$
p=100 \cdot \frac{214}{321} \approx 67 \% .
$$

Autor se domnívá, že pro větší rozmĕry nádoby se procento ještě trochu zvětší.
Další náměty k tomuto luštěninovému tématu již nabízet nebudeme. Pokud v̌̌ak někdo z vás přijide s nějakŷm novŷ́m pěknŷm řešením anebo originálním nápadem, jeho článek samozřejmě rádi z veřejníme pro širší akademickou obec.

Téma 3 - Vážení kuliček

Pozdě došlá řešení z minulého čísla

Nestihli jsme včas zpracovat příspěvky Bc. Jana Holečka, Ivany Čapkové a Mgr. Pavla Habudy, kteří dělili kuličky na 4 trojice a dosáhli maximálního počtu 4 vážení. Poněvadž byl tento postup již uveřejněn, nebudeme jejich pr̂́spěvky přetiskovat.

Polemika s vážením 13 kuliček

Mgr. Pavol Habuda: 13 kuliček pomocí 3 vážení určit nejde.

Autor zvážil 1234 s 5678 . Pokud nastane nerovnost, použije postupu otištěného ve druhém čísle časopisu. Pokud nastane rovnost, ukazuje výpisem všech moz̆ností, že 13. kuličku zvážit nelze.

To je sice dưkaz, že to nejde navážit za těchto počátečních podmínek, ale to neznamená, že při jiném prvním vážení to zjistit nepůjde. Jak je vidět z dalších ̛̌ešení, možné to je.

Ivana C̄apková: Obecný vzorec
Autorka přikládá postup, jak 13 kulič̌ek navážit; bohužel je v něm chyba, nebợ v jednom py̌ípadě zjistí pouze, která kulička je vadná, nikoliv to, jestli je lehčí nebo tě̌̌̌̌í.

Poopravila vzorec určující počet važení N nutných k určení k kuliček z původního $N=\left\lceil\log _{2} k\right\rceil$ na silnějěí odhad $N=\left\lceil\log _{3}(2 k+1)\right\rceil$. Bohužel tento odhad nepodpořila vědeckŷmi argumenty.

Mgr. David Holec: Určení špatné při znalosti druhu vady
Předpokládejme, že právě̌ jedna kulička je špatná a víme, je-li lehčí nebo tě̌̌̌̌íí než ostatní. BƯNO ${ }^{1}$ je špatná kulička lehčí než ostatní. Rozdělme kuličky na třetiny takto:

$$
\left\lceil\begin{array} { l }
{ k } \\
{ \frac { k } { 3 } } \\
{ \rceil }
\end{array} \quad \left\lceil\begin{array}{l}
k \\
\frac{k}{3} \\
\rceil
\end{array}, \quad k-2\left\lceil\begin{array}{l}
\frac{k}{3} \\
\hline
\end{array}\right.\right.\right.
$$

Porovnejme první a druhou skupinu kuliček. Nastane-li rovnost, je špatná kulička ve třetí skupině. Bude-li lehčí polovina lehčí, je v nís špatná kulička, v opačném případě je špatná kulička ve skupině 3 . Ve všech třech případech musíme zvážit uと̆ pouhou třetinu kuliček.

Indukcí mưžeme pokračovat dále, dokud nedostaneme jednu kuličku, která už je zjevně špatná.
Počet nutných vážení k určení špatné kuličky je nutno provést $N=\left\lceil\log _{3} k\right\rceil$ vážení.

Dr. Daniel Klír: Zobecnění vzorce vč. vážení 13 kuliček

Označme si 13 kuliček jako 123456789ABCD.

1. Zvážíme 12345 s 67890 . Pokud je výsledkem rovnováha, je špatná kulička mezi ABCD , což umíme určit na 2 vážení (viz minulé číslo). Uvažujme tedy, že první část je lehčí než druhá.
2. Porovnejme 12367 s 4 ABCD .
$=$ špatná kulička je mezi 589 (5 je potenciálně lehčí, 89 jsou potenciálně tẽ̛ží). Zvážíme tedy 89 při rovnosti je lehčí 5 , jinak určíme, která z 89 je špatná a jak.
< ̌̌patná je jedna z 123 , protože zŭstaly na stejné misce vah. Všechny jsou potenciálně lehčí a tak napľ. zvážením 12 zjistíme, která a jak je špatná.
$>$ tento případ je analogický až na to, že špatná je mezi 467, které změnily misku vah.
Byla položena otázka, proč nejde 12 kuliček zvážit méně než 3 vázeními. Každým vážením mưžeme lokalizovat špatnou kuličku v $1 / 3$ kuliček. Jedním vážením mư̌̌eme kuličku lokalizovat maximálně na $12 / 3=4$ míst, na 2 vážení do $4 / 3>1$ míst, takže 2 vážení nemohou rozhodně stačit.

Autor se dále zamŷ̌lí nad obecným vzorcem, porovnáním s tabulkou se dostává ke vzorci $k=\frac{3^{N}-1}{2}$. Tuto zákonitost se pokouší vysvětlit, avšak zdâ̌ilo se mu zdůvodnit pouze to, proč by měl vzorec růst podobně jako 3^{N} - při každém vážení dostaneme informaci o jedné ze 3 možností, takže počet kuliček mưžeme podělit až 3.

Autorské řešení

Nejprve si položme otázku, kolik mưžeme maximálně navážit kuliček pomocí N vážení. Každé vážení mŭže dát výsledek menší, rovno nebo věť̌í - tedy 3 možnosti. N vážení mưže dopadnout 3^{N} způsoby. Pokud by se nám podařilo zajistit, aby každý možný výsledek vážení odpovídal jednomu možnému výsledku měrení, využijeme vah nejvyšíí možnou mírou. Vysledkem mêrení mưže být:
(a) všechny kuličky mají stejnou hmotnost (1 výsledek),
(b) některáa kulička je lehčí (k výsledků)
(c) některáa kulička je tě̌̌̌̌í (k výsledkư).

Možnỵch vỵsledků mě̌ení je tedy $2 k+1$. Musí platit $2 k+1 \leq 3^{N}$, tedy $k \leq \mathrm{f}(N)=\frac{3^{N}-1}{2}$. Více kuliček rozhodně nejsme schopni navážit, otázkou je, dá-li se vymyslet postup, jak navǎ̃it kuličky takto efektivně.

[^0]Vypišme si tabulku několik počátečních hodnot tohoto vzorce:
vážení (N) kuliček (k) $)$

To, že skutečně existuje postup, jak maximálně využít informace z vah, dokažeme indukcí.
Krok 1. Na 1 vážení jsme schopni pomocí jedné normalizované kuličky zjistit, zda a jak je 1 kulička vadná.
Krok 2. Dovedeme-li pomocí N váženís použitím normalizovaných kuliček zjistit, zda a jak je vf(N) kuličkách některá vadná, pak pomocí $N+1$ vážení budeme schopni udělat totéž prof $(N+1)$ kuliček.

Takto tedy matematickou indukcí dokázeme, že pro každý počet vázení N umíme navǎ̌it f(N) kuliček. Naopak dostaneme-li k kuliček, mưžeme jejich počet doplnit normalizovanými kuličkami na nejbliž̌í vyšsí hodnotu $\mathrm{f}(N)$ a zvážit je pomocí N vážení. Počet vázení, které potřebujeme na zvažení obecného počtu k kuliček, je

$$
N=\left\lceil\log _{3}(2 k+1)\right\rceil .
$$

První krok indukce jsme dokázali, dokažme i krok druhy. Necht nějak umíme navážit f (N) kuliček na N važení. Vymysleme postup, jak přidáním jednoho važení zvǎzíme $f(N+1)$ kuliček. Jaký je vztah $f(N)$ af $(N+1)$?

$$
\mathrm{f}(N+1)=\frac{3^{N+1}-1}{2}=\frac{3 \cdot 3^{N}-3+2}{2}=3 \cdot \frac{3^{N}-1}{2}+1=3 \cdot \mathrm{f}(N)+1 .
$$

Rozdělme si $\mathrm{f}(N+1)=3 \cdot \mathrm{f}(N)+1$ kuliček na 3 skupiny a přidejme jednu normalizovanou kuličku. Situace je vidět na vloženém obrázku.

Nyní zvážíme první 2 skupiny kuliček. Výsledkem vážení mưže být:
$=$ pak jsou obě skupiny správné a případná špatná kulička je ve třetí skupině, která obsahuje $f(N)$ kuliček, které uと̆ podle indukce na N vážení určíme,
< pak je ̌̌patná kulička ve skupině 1 nebo 2 , nebo je to kulička K. Spojme skupiny 1 a 2 tak, že první kuličku ‘spojíme’s první, druhous druhou... a a poslednís poslední. Tyto kuličky budeme považovat za jednu novou kuličku o dvojnásobné hmotnosti. Nová skupina se skládá z $\mathrm{f}(N)$ kuliček a mưžeme ji proto zvážit podle indukčního předpokladu. Tak zjistíme jeden z 3 možných výsledků:
$=$ pokud budou všechny ty to spojené kuličky správné, pak nutně byla špatná kulička K a víme i to, že má menší hmotnost,
< pokud je jedna spojená kulička lehčí než ostatní, pak je z této skupiny 2 kuliček jedna špatná. Bude to ta z 1. skupiny,
$>$ pokud je naopak jedna spojená kulička tě̌̌̌̌í, je špatná zřejmě ta z 2 . skupiny.
$>$ také spojíme kuličky do skupin po 2 a použijeme indukční předpoklad. Určení špatné kuličky bude probíhat analogicky, pouze výsledky budou opačné než v případẽ ‘ <'.
Použili jsme jen jedno vážení, jinak jsme se pouze odkázali na indukční předpoklad. Ke správnému pochopení této úvahy zkuste porovnat tento obecný postup s konkrétním postupem vážení 4 kuliček na 2 vážení uveřejněném v minulém čísle.

Za daných předpokladủ (použití normalizovaných kuliček, bud’ jsou všechny dobré nebo je právě jedna špatná, chceme zjistit nejen která kulička, ale i jak je špatná) je toto nejlepší možné Y̌ešení, nebof podle nerovnosti nemưžé lep̌̌í existovat a ukázali jsme, že tento postup funguje.

Pokud někdo z vás vymyslí nějaké zajímavé řešení za jiných předpokladủ, mư̌̌e o tom napsat článek. Toto téma je již považováno za uzavřené.

Téma 4 - Tetris

Nakreslené kostičky

Bc. Jan Holeček, Prof. Tomáš Brauner, Dr. Daniel Klír, Kateřina Nováková: Tvary pentaminových a tetrisových kostiček
Jednoduchŷm kreslením na čtverečkovaném papíře bylo snadné přijít na to, jaké jsou tvary (mono-, di- a tri-) minovych kostiček:

Již zmiňovaných tetrisovych kostiček je 5 a jsou to tyto:

Pokračováním postupu zjistíme, že pentaminových kostiček je 12 a jsou to následující:

Bc. Jan Holeček nalezl i 35 hexaminových kostiček:

Bc. Jan Holeček dále roztr̂́dil kostičky na dvě třídy podle toho, zda je kostka stejná jako její zrcadlovy obraz (po vhodné rotaci) nebo ne. Z 12 pentaminových kostiček pať̛í do každé ty̌ídy 6 kostiček (viz písmena A a N).

Bc. Jan Holeček: Tvary trojrozměrných kostiček
Kostičky složené ze 3 a méně čtverců nebudou nikdy opravdu trojrozměrné (vždy budou ležet věechny krychle v nějaké rovině). Bc. Jan Holeček a Bc. Alě̆ P̛̌ivétivý nalezli všechny trojrozměrné tetrisové kostičky. Mimo vy̆se uvedených dvourozměrných existují ještě tyto 2 :

Bc. Jan Holeček se pokusil nalézt i všechny trojrozměrné pentaminové kostičky. Mimo 12 uvedených dvourozměrných nalezl těchto 8:

I u těchto kostek je uvedeno písmenko urěující, je-li kostka shodná se svým zrcadlovým obrazem. Podle našeho názoru ale nenalezl všechny kostičky. Zkuste chybějící kostičky nalézt.

Nikdo z autorů bohužel nepodnikl odvážněǰ̌í kroky ve zkoumání trojúhelníkových nebo šestiúhelníkových kostiček. Přitom zrovna tyto kostičky by mohly byt velice zajímavé.

Metody vytváření kostiček

Bc. Jan Holeček: Algoritmus tvơ̌ení n-minových kostiček
Odeberu-li jeden čtvereček tak, abych neporušil souvislost kostky, pak z n-minové kostky vyrobím kostku ($n-1$)-minovou. Tento postup mohu obrátit tak, že ke všem ($n-1$)-minovým kostičkám postupně zkouším přidat na všechny možné pozice jeden nový čtvereček; tak to po odstranění duplicit získám všechny n-minové kostky.

V programu by se to implementovalo zapisováním čt verečků do pole o rozměrech $\left\lceil\frac{n}{2}\right\rceil \times n$. V programu si musíme dát pozor na několik věcí:

- zkusit přidat novy čtvereček na opravdu všechny možné pozice,
- posunout a vyrotovat správně kostku, abychom se věli do pole,
- vhodně porovnávat, zda jsme nově vytvơ̌enou kostičku už nevytvořili (i vyrotovanou nebo vyzrcadlenou).

Autor se bohužel touto otázkou do hloubky nezabýval, takže ani nevíme, jaké by tento program dal výsledky. ${ }^{2}$ Zajímavé by bylo aspoñ zjistit, kolik je kostič̌ek vy̌̌̌̌ích r̛ádů. Zkuste na toto téma bádat: kupříkladu mǔžete napsat takovy program a poslat nám výsledky, které byly jeho výstupem.

Autor dále uvažoval nad kostičkami ve více dimenzích a došel k závěru, že zde existují netriviální vícerozměrné transformace (napǐ. zrcadlení či rotace), ve kterých je orientace témě̌ vyloučena. Jenom ve treech dimenzích mǔ̌̌eme kostku vyrotovat do 4 směrů a každou z nich ještě zrcadlově obrátit (takže málo symetrická kostka se dá nakreslit $8 \mathrm{způsoby}$).

Podobným směrem se ubíraly i úvahy Bc. Pavla Habudy, který se na otázku díval nikoliv z hlediska programátorského, ale z hlediska teorie grafů. Nakreslil několik grafǔ, ze kterých je patrno, která kostička se vyvinula z které, bohužel však jeho grafy nejsou kompletní, některé důležité kostky se v nich neobjevují.

Ivana Capkková: Hledání systému v počtu kostiček
Autorka zkusila nalézt systém v počtech kostiček jednotlivých řádủ. Bohužel její úvahy postrádají jakékoliv vědecké zdǔvodnění.

Vypišme si tabulku počtů kostiček a do řadku pod ně napišme diference (rozdíly) následujících dvou. Toté̌̃ uděláme s diferencemi. Poté uděláme podobnou operaci, a to podělení následujících 2 čísel. Vyjde nám tato tabulka:

$$
\begin{array}{llllllll}
\text { počty } & 1 & 1 & 2 & 5 & 12 & 35 \\
\text { rozdíl } & 0 & 1 & 3 & 3 & 3 & 33 \\
\text { rozdíl } & & 1 & 2 & 4 & 4 & 16
\end{array}
$$

[^1]Autorka předpokládá, že podíl v dolní řádce bude postupně nabývat tě̌chto hodnot: $2,2,4,4,8,8,16,16 \ldots$ Bohužel nenapsala, kolik kombinací kostiček nám podle tohoto vzorce vyjde pro $n=7$.

Bc. Aleš Přávětivý: Spojování 4 -rozměrných krychlí v n-rozměrném prostoru

Autor předpokládá, že v jednorozměrném prostoru existují 3 možnosti poskládání objektů: jeden dlouhy had, had s odbočkou a písmeno x. ${ }^{3}$ Dále ově̌̌uje, že ve dvojrozměrném prostoru existuje 5 vy̆̌e uvedených tetrisových kostiček. Ve trojrozměrném prostoru pak přibudou daľ̌í 2 kostky (také vy̌̌e uvedené). Z této neúplné indukce usuzuje, že počet tetrisových kostiček v n-rozměrném prostoru je $2 n+3$.

Bc. Aleš P̛̌ivětivý: Spojování n čtverců ve dvojrozměrném prostoru

Autor se rozhodl rozdělit kostky do skupin podle délky nejdelší úsečky (např. u pentamina má had délku 5 , písmeno x délku 3...). Těchto skupin bude vždy $n-1$, je-li $n>1$. Celkovy počet kostek je součet počtů kostek v jednotlivých skupinách.

Je-li délka nejdelší úsečky k, musíme k ní z boku přilepit $n-k$ dalších čtverců. Pro $k \in\{0,1,2\}$ je možno počty kostiček v této skupině spočítat relativně snadno, pro $k>2$ je to velmi obtí̌né.
$k=n$: taková 'nejdelši' kombinace je vždy jen 1 ,
$k=n-1:$ pro $n \in\{1,2\}$ tyto kombinace neexistují, pro $n=3$ je jedna, pro $n=4$ jsou dvě... Vznikají tak, že kolem základní řady délky $n-1$ umístujeme čtverec, a to celkem $\left\lfloor\frac{n}{2}\right\rfloor$ zpǔsoby.
$k=n-2$: pro $n<4$ tyto kombinace neexistují. Pro $n=4$ jsou 2, pro $n=5$ jich je 8 . Lze odvodit, že pro $n \geq 6$ je počet kombinací $\left\lceil\frac{n^{2}-2 n+2}{2}\right\rceil$.
$k<n-2$: pro tyto kombinace mưžeme udělat hruby odhad na $\frac{(n-1)^{n}}{n!}$ kombinací.
Následuje tabulka všech vypočítaných kombinací pro n od 1 do 7 .

n	0.	I.	II.	III.	IV.	V.	Celkem
1	1						1
2	1						1
3	1	1					2
4	1	2	2				5
5	1	2	8	1			12
6	1	3	13	18	1		36
7	1	3	19	42	12	1	78

K této tabulce musíme poznamenat, že podle našeho názoru je počet všech kombinací pro $n \in\{6,7,8\}$ jinĝ, a to 35,108 a 369 . Nicméně nikdo není neomylnǵ, nejlépe by bylo, kdybyste se pokusili tato čísla potvrdit nebo vyvrátit.

K této problematice se vyjádřil i Dr. Daniel Klír. Zamŷslí se nad tím, že je diskutabilní, jsou-li za kostičky považovány i útvary s děrami nebo 'velmi nekonvexní’ útvary, nebở takové kostičky bychom moc nevyužili v hrách, jako je Tetris, kde je úkolem skládat kostičky k sobě. Uvedl i několik poznámek o trojúhelníkových a seestiúhelníkových útwarech, které však nestojí za otisknutí.

Nalezené vyskládané obrazce

Bc. Jan Holeček, Prof. Tomáš Brauner: Obdélníky všech rozměrǔ

Tito dva autoři poslali správné řešení zadané úlohy. Mnoho autorů bohužel nepochopilo zadání. Považoval jsem je za tak jasné, že jsem opomněl zdůraznit, že každá kostička musí bŷ́t p̛̆i vypln̆ování použìta právě jednou. V opačném případě je úloha triviální.

[^2]Hlavním úkolem bylo vyskládat obdélníky $6 \times 10,5 \times 12,4 \times 15,3 \times 20$. Tato úloha má velký počet řešení. Na ní̌̌e uvedeném obrázku jsou jě̛tě nakreslena navíc 2 vyskládání šachovnice 8×8 bez 4 polí (rohových a středových), které navrhli sami autoři.

Tyto útvary se dále pokoušeli vyskládat Mgr. Pavol Habuda, Kateřina Novâková a Jitka Krouželová, kteří bohužel nepochopili pointu úlohy a vyư̌ívali některých kostiček víckrát a některých vůbec.

Bc. Jan Holeček: Vyskládání jednotlivých kostiček

Tato úloha byla jednoduš̌̌í variantou skládání obdélníkủ. Přesto její řešení poslal pouze tento autor. Úkolem bylo pro každou z 12 kostiček provést tuto operaci:

- odstranit tuto kostičku,
- odstranit ještě 2 dalsíí kostičky (libovolné),
- z ostatních kostiček poskládat zvětšeninu odložené kostičky.

Následují vybrané konstrukce všech 12 kostiček.

Bc. Jan Holeček: Algoritmus na skládání kostiček k sobě

Stejně jako u algoritmu na tvơ̌ení kostiček, ani tady se autor bohuěel nepustil do hloubky. Pouze stručně popsal algoritmus, už ho však neimplementoval v žádném programovacím jazyce (ani symbolicky).

Algoritmus používá pole o velikosti daného obdélníka, ve kterém je uloženo u každého čtverečku 0 nebo nenulové číslo, podle toho, který útvar zasahuje na dané políčko. Na počátku je pole prázdné. Poté zkoušíme (nejlépe backtrackem ${ }^{4}$) přikládat postupně všechny kostky, dokud nesložíme celý obdélník. Nalezené řešení zapís̃eme do souboru a py̌ípadně zkusíme vyhledat další.

Každou kostku zkoušíme přiložit ve všech 8 jejích rotacích, ty to rotace se velmi snadno provedou napर̌. záměnou os x a y, násobením souřadnic číslem $-1 \ldots$

Autor se velmi mylí v odhadech časové složitosti programu. Míní, že by byla ̛̌ádově tisíce let. Program, který jome si pro tento účel v redakci vytvořili, však všechna f̛ešení vypíše asi po 10 minutách. Bylo by zajímavé, kdyby se někdo z Vás pokusil tento program sestrojit a publikovat jeho výsledky. Nejzajímavěǰ̌í by asi byl počet všech moz̆ných vyskládání daného obdélníka.

[^3]
Náměty pro dalsí výzkum

- sestrojit program pro výpočet kostiček a publikovat jejich počty pro větší n,
- sestrojit program pro skládání obrazců a publikovat poč̌y všech možných vyskládání,
- totễ pro vícedimenzionální objekty,
- totễ pro trojúhelníkové a šestiúhelníkové kostky (pro které by mohly být obrázky velice pěkné).

Téma 5 - List papíru

Nejprve bych chtěl napsat menší komentẫ o této úloze. Domnělý autor Mgr. Pavol Habuda nám obratem napsal, že takovou úlohu nikdy nevymyslel a neposlal. To nás velmi udivilo, nebot jsme tuto úlohu nevymysleli, ale přepsali z jednoho dopisu, který nám do redakce došel, a jediné dopisy, které nám sem došly, byly od zmiňovaného Mgr. Pavla Habudu. Každopádně se za vzniklé nedorozumění omlouváme.

Prof. Tomáš Brauner: Mê̌ení velikosti \vec{g}
Poskládáme papír do tuhé tyčky o velikosti $289 \times 6.5 \mathrm{~mm}$, kterou použijeme jako fyzické kyvadlo. Nejprve musíme vypočítat moment setrvačnosti obdélníku o hmotnosti M, délce L a šîrcce $2 A$. Osa otáčení prochází tyčkou ve vzdálenosti D od konce. Vše je dokumentováno na p̛̌ỉloženém obrázku.

$$
\begin{aligned}
I & =\iint_{\text {tyčkk }} \rho\left(x^{2}+y^{2}\right) \mathrm{d} y \mathrm{~d} x=\rho \int_{-D}^{L-D}\left[\int_{-A}^{A}\left(x^{2}+y^{2}\right) \mathrm{d} y\right] \mathrm{d} x=\rho \int_{-D}^{L-D}\left(2 A x^{2}+\frac{2}{3} A^{3}\right) \mathrm{d} x=\rho\left[\frac{2}{3} A x^{3}+\frac{2}{3} A^{3} x\right]_{-D}^{L-D}= \\
& =\frac{2}{3} \rho A\left[L^{3}-3 L^{2} D+3 L D^{2}-D^{3}+A^{2} L-A^{2} D+D^{3}+A^{2} D\right]=\frac{2}{3} \rho A L\left[L^{2}-3 L D+3 D^{2}+A^{2}\right], \\
I & =\frac{m}{3}\left(L^{2}+A^{2}-3 L D+3 D^{2}\right) .
\end{aligned}
$$

Vzdálenost tě̌̌iště̌ od osy otáčení je $d=L / 2-D$. Dosadíme-li moment setrvačnosti do vzorce pro periodu kyvu fyzického kyvadla, získáme

$$
T=2 \pi \sqrt{\frac{I}{m g d}}=2 \pi \sqrt{\frac{m / 3\left(L^{2}+A^{2}-3 L D+3 D^{2}\right)}{m g(L-2 D) / 2}}=2 \pi \sqrt{\frac{2}{3 g}(L+\underbrace{\frac{A^{2}-L D+3 D^{2}}{L-2 D}}_{X})} .
$$

Změ̌̌ením periody a parametrů kyvadla pak dostaneme

$$
g=\frac{3 \pi^{2}(L+X)}{3 T^{2}}
$$

vzhledem k parametrům $L=289 \mathrm{~mm}, A \approx 3 \mathrm{~mm}, D \approx 5 \mathrm{~mm}$ můžeme ve vyrazu X zanedbat A^{2} a $3 D^{2}$ a dostaneme

$$
g \approx \frac{8 \pi^{2} L}{3 T^{2}} \cdot \frac{L-3 D}{L-2 D}
$$

Dvacetinásobným mê̌ením doby 30 kmitů bylo změ̌̌eno, že $T=0.870 \pm 0.6 \%$. Započítáme-li i chybu D, L, dostaneme, že $g=9.87 \mathrm{~m} \cdot \mathrm{~s}^{-2} \pm 1 \%=(9.87 \pm 0.10) \mathrm{m} \cdot \mathrm{s}^{-2}$.

Prof. Tomás̆ Brauner, Bc. Štěpánka Kučková: Měření hustoty papíru

Nejprve zvázíme papír: $m=5.57 \mathrm{~g} \pm 2 \%$, jeho rozměry jsou $28.9 \mathrm{~cm} \times 21.0 \mathrm{~cm}$. Nejproblematičtějǔí je měrení
 zovaly nerovnoměrnosti. Vyjde tak $t=0.11 \mathrm{~mm} \pm 4 \%$. Hustota papíru pak je $\rho=\frac{m}{a b t} \Rightarrow \rho=842 \mathrm{~kg} \cdot \mathrm{~m}^{-3} \pm 6 \%=$ $(842 \pm 50) \mathrm{kg} \cdot \mathrm{m}^{-3}$.

Dr. Daniel Klír: Postupné odvození mnoha fyzikálních konstant

Ze znalosti standardní velikosti papíru nadefinujeme délku $d=1 \mathrm{~mm}$. To nám umoz̆ní sestrojit nádobu o objemu $V=1$. Naplníme-li tuto nádobu vodou, mưžeme definovat hmotnost $m=1 \mathrm{~kg}$. Casovou jednotku $t=1 \mathrm{~s}$ a gravitační zrychlení g mŭžeme přibližně definovat podle délky kyvu 1 m dlouhého matematického kyvadla: $T=2 \pi \sqrt{\frac{l}{g}}$.

Součin gravitační konstanty a hmotnosti Země zjistíme podle vzorce $g=\kappa \frac{M_{1} M_{2}}{R^{2}}$. Poloměr Země mŭžeme pro tento účel změ̛̌̀it 2 způsoby:

- přikládáním papíru A4 k Zemi, což je časovẽ velmi náročné a kvůli mỡím obtížně proveditelné;
- změnou gravitačního zrychlení v závislosti na vy̆šce - což je možné díky tomu, že R se ve vzorci vyskytuje ve druhé mocnině.
Hmotnost Země mưžeme určit z charakteru a parametrů dráhy Měsíce kolem Země $m u^{2} R_{Z M}=\kappa \frac{M_{2} m}{R_{Z M}^{2}}$. Gravitační konstantu lze určit, známe-li hmotnosti dvou těles a jejich vzdálenost, změ̌ením gravitační síly a porovnáním se silou, kterou působí pružina. Tato metoda je velice nepřesná, lepší je použití torzních vah.

Celé naše mě̌ení bude zatíženo více a více vzrůstající chybou. Naše úvahy tedy mají význam pouze teoreticky za absurdního předpokladu absolutní přesnosti měrení.

Mgr. Jan Mysliveček, Mgr. Pavol Habuda, Bc. Štëpánka Kučková: Statické a dynamické tření

Cinitel statického smykového tření můžeme určit podle úhlu, pod kterym musíme naklonit rovinu, aby se papír začal smykat

Podle obrázku vidíme, že v okamžiku, kdy se papír začne pohybovat, nastane rovnost sil $0=a=g\left(\sin \alpha-\cos \alpha F_{s}\right)$, tedy $F_{s}=\frac{\sin \alpha}{\cos \alpha}=\tan \alpha$.

Dynamické tření se projevuje při pohybu, takže ho nejlépe určíme podle vzorce pro rovnoměrny zrychleny pohyb $s=\frac{1}{2} a t^{2}=\frac{1}{2} g\left(\sin \alpha-\cos \alpha F_{D}\right) t^{2}$, tedy po úpravách $F_{D}=F_{S}-\frac{2 l}{g t^{2}} \cdot \frac{1}{\cos \alpha}$.

Bc. Aleš Pf̌̌̌větivý: Zmačkatelnost papíru

Autor provedl 50 mě̌ené průměrů koulí, které vzniknou po zmačkání papíru A4. Statistickým zpracováním
namě̌̌ených hodnot vznikne Gaussova ky̌ivka (četnost jednotlivých průměrů).

Bc. Štěpánka Kučková: Tíhové zrychlení, součinitel odporu, modul pružnosti v tahu
Papír zmačkáme do co nejmenší kuličky, pouštíme ho ze známé vy̌̌kky a mêříme čas letu. Zanedbáme-li odpor vzduchu, pohybuje se papír rovnoměrně zrychleným pohybem se zrychlením $g=\frac{2 s}{t^{2}}$. Bylo změřeno $s=2.1 \mathrm{~m}$, $g=(7 \pm 1) \mathrm{m} \cdot \mathrm{s}^{-2}$. Menší naměřené zrychlení bylo zpŭsobeno zmíněným zanedbáním odporu vzduchu.

Budeme-li na pově̌eny papír foukat vzduch, můžemezměřit úhel odklonění od svislé osy. Nejprve si změríme rychlost vzduchu proudícího z fénu pomocí odklonění vody, vytékající z nádoby, od původní trajektorie. Voda vytéká známou rychlostí $v=\sqrt{2 h g}$, rozepsáním sil dostáváme $v_{p}=v \tan \alpha=\sqrt{2 h g} \tan \alpha$, naměřené hodnoty jsou $h=0.32 \mathrm{~m}$, $\alpha \approx 18^{\circ}, v_{P} \approx 0.80 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

Papír složíme do malého obdélníku a mě̌íme úhel, o ktery se odkloní při foukání fénem. Podle obrázku platí $F=$ $F_{g} \tan \beta, F=\frac{1}{2} C S \rho v^{2}, C=\frac{2 F}{S \rho v^{2}}=\frac{2 F_{g} \tan \beta}{S \rho v^{2}}$. Namě̌̌ené hodnoty: $m=4 \cdot 10^{-3} \mathrm{~kg}, v_{p}=0.80 \mathrm{~m} \cdot \mathrm{~s}^{-1}, \rho=$ $1.2 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, S=5.2 \cdot 7.3 \cdot 10^{-4} \mathrm{~m}^{2}$ nám dávají $C=(9 \pm 1)$.

Papír nastříháme na tenké proužky, na které postupně přidáváme závaží. Modul pružnostì v tahu zjistíme zmẽ̌ením relativního prodloužení papíru $E=\frac{F_{G} \cdot l_{1}}{S \cdot \Delta l}$.

Mgr. Jaroslav Janský, Ondřej Škoda, Mgr. Jan Mystiveček, Andrej Pavlik, Bc. Aleš Přivětivý: Kuriozity
Mgr. Jaroslav Jánský by papír rozstříhal na prouž̌ky délky l. Jeden z nich by házel a ostatní by byly narovnány ve vzdálenostech $2 l$. Podle postupu publikovaném v předchozím ročníku časopisu by chtěl statisticky změ̌ìit π. Názor redakce je, že pokud by se papír použil na zápis matematických vzorcủ, tak by se π vypočítalo mnohem snadněji.

Ondřej Škoda by využil znalosti velikosti papíru formátu A4 a pomocí půlení intervalů by získal měřidlo pro určování vzdáleností a plošných obsahủ. Přehnutím papíru kolem 1 rohu bychom získali na mêření i úhel 45°.

tady přehneme

Mgr. Jan Mystiveček by chtěl vystříhnutím dírky do papíru mě̌it pomocí difrakce vlnovou délku světla. Myslíme si, že by pro to potřeboval monofrekvenční zdroj světla.

Andrej Pavlîk by papír přeměnil na plyn. Pak by změ̌̌il počet molů daného plynu podle molární hmotnosti $n=M / \mu$. Dosazením do stavové rovnice by vypočítal plynovou konstantu $R=\frac{p V}{n T}$. Pak by vypočítal Boltzmanovu konstantuz Brownova pohybu. Z té by pak vypočítal Avogadrovu konstantu. Při spalování papíru by určil Planckovu konstantu podle intenzity záření a Stephen-Boltzmanovu konstantu podle vyzářené energie (za předpokladu, že papír je dokonale černé těleso). Po zjištění počtu vzniklých fotonů bychom byli schopni změ̌̌it i Planckovu konstantu.

Bc. Aleš Pf̌̌uětivý by přikládáním papíru změřil Astronomickou jednotku (vzdálenost Země-Slunce). Pro zvy̌̌enou teplotu v okolí Slunce doporučuje pracovat v noci.

Dr. Daniel Klitr, Mgr. Jan Mystiveček, Mgr. Pavol Habuda, Bc. Aleš Př̌větivý: Návrhy na daľ̌í mê̌ení
U papíru lze změ̌̌it měrny elektricky odpor (vyšlo by asi $10^{13} \Omega \mathrm{~m}^{-1}$). Pokud na sebe položíme více papírů, mưžeme zmêřit mez pevnosti v tahu jako $\sigma=F / S$, mez pevnosti v tlaku se kvůli kroucení papíru bude mě̌rit velmi obtízneč. Dále je moz̆no určit tepelnou vodivost, absorbci světla a spalné teplo.

Odpor vzduchu mǔžeme vypočítat takto: pustíme zmačkanou kuličku z dostatečně velké vy̌̌ky a po změ̌̌ení její rychlosti po jejím ustálení (nap̌̌. při nárazu na zem) mưžeme podle vzorce $F_{o d}=\frac{1}{2} c \rho_{V} S v^{2}$ zjistit, že $\rho_{V}=\frac{2 m g}{c S v^{2}}$.

Relativní permitivita papíru se zmêr̂í pomocí změny kapacity deskového kondenzátoru po vložení papíru mezi jeho desky $\varepsilon=\frac{C_{\text {papír }}}{C_{\text {vzduch }}}$.

Úloha 4 - Posloupnost

AUTORSKÉ ŘEŠENÍ

Posloupnost 122112122122112112212112 mư̌̌̌e samozřejmě pokračovat, jak mnozí z vás správně uvedii, libovolně, aniž by přitom přestala být dobře definovanou posloupností. Avšak ze skutečnosti, že se tato úloha objevila v matematickém seminárí (renomovaném a věhlasném), jste mohli předpokládat, že hledané řešení úplně náhodné být nemá a že má být aspon̆ trochu matematické.

Tak tedy, jak se vytvâ̌í zmíněná posloupnost: (viz obrázek)

- posloupnost začíná jedničkou a dvojkou,
- jednička na prvním (lichém) místě ̛̌íká, abychom napsali jednu jedničku, ta je vธ̌ak už napsaná,
- dvojka na druhém (sudém) místě říká, abychom napsali dvě dvojky,
- na třetím místě je dvojka, tedy na konec zatím napsané posloupnosti napíšeme dvě jedničky,
- takto postupně procházíme další místa; čteme-li hodnotu z lichého (sudého) místa, potom na konec posloupnosti připís̃eme tolik jedniček (dvojek), kolik udává číslo na tomto místě.
Posloupnost tedy yypadá takto:

$$
122112122122112112212112-122112112122122112122121121122122112 \ldots
$$

Vzhledem ke způsobu, jakým se posloupnost tvơ̌í, nelze určit jednoznačně, kolik obsahuje jedniček a kolik dvojek. (Vě̌rte však, že jakýsi pilny student MFF UK se to pokusil spočítat a zjistil, že poměr mezi jedničkami a dvojkami je $0.49-0.52$, cỡ znamená, že jedniček je přibližně̌ stejně jako dvojek.)

Kromě vŷše popsaného ̛̌ešení přišlo i mnohojiných, neméně zajímavých. Bc. Aleš Pf̌ivětivý naši posloupnost generoval pomocí Fibonacciho čísel: pro každé sudé Fibonacciho číslo F_{n} nebo pro každý člen, pro který platí

$$
n^{4}-36 n^{3}+411 n^{2}-1635 n+1260=n
$$

jsou na n-tém místě dvojky. Na ostatních místech jsou jedničky.
Jiné originální ̛̌ešení zaslal Mgr. Jan Fátor, který p̛̌ǐ̌adil písmenům abecedy střídavě jedničky a dvojky (tedy $A=1, B=2, C=1, \ldots$). Posloupnost pak přepsal jako názvy hudebních skupin:

ABBA ELO BLUR REM TM A TLC BEAT - LES.

Dle tohoto klíče tedy posloupnost pokračuje úsekem 211 . Řešení na nás esteticky hluboce zapůsobilo, ale bohužel jsme museli s politováním konstatovat, že souvislost s matematikou najít neumíme.

Ostatní matematická řešení se zpravidla zabyvala hledáním nějaké periody. Objevilo se tê̌̌ pozoruhodné řešení využívající osové souměrnosti s teorií poruch symetrie.

zápis:	$\underline{\text { čtecí index, }}, \overline{\text { zapisovací index }}$
1.	$\underline{\overline{1}} 2$
2.	$1 \overline{2} \overline{2}$
3.	$12 \underline{2} \overline{11}$
4.	$122 \underline{1} 1 \overline{2}$

Ưloha 5 - Sluníciko

Známe parametry zemské dráhy (poloměr r, periodu T) a úhlovou velikost SLunce. Pro jednoduchost předpokládáme, že se Země pohybuje kolem Slunce po kruhové dráze.

Pro systém Země-Slunce platí, že gravitační síla, kterou působí Slunce na Zemi, je rovna odstř̌edivé síle působící na Zemi.

$$
\begin{aligned}
F_{g} & =F_{o} \\
\kappa \frac{M_{Z} M_{S}}{r^{2}} & =M_{Z} \omega^{2} r, \\
\text { tedy } M_{S} & =\frac{\omega^{2} r^{3}}{\kappa}, \quad \text { dále víme, že } \omega=2 \pi / T \\
M_{S} & =\frac{4 \pi^{2} r^{3}}{\kappa T^{2}} . \\
\operatorname{tg} \frac{\alpha}{2} & =\frac{R}{r}
\end{aligned}
$$

$$
\operatorname{ted} y R=r \operatorname{tg} \frac{\alpha}{2}
$$

$$
V_{S}=\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi r^{3} \operatorname{tg}^{3} \frac{\alpha}{2}
$$

po dosazení do vztahu pro hustotu $\rho_{S}=\frac{M_{S}}{V_{S}}$

$$
\begin{aligned}
& \rho_{S}=\frac{4 \pi^{2} r^{3}}{\kappa T^{2} \frac{4}{3} \pi R^{3}}=\frac{4 \pi^{2} r^{3}}{\kappa T^{2} \frac{4}{3} \pi r^{3} \mathrm{tg}^{3} \frac{\alpha}{2}} \\
& \rho_{S}=\frac{3 \pi}{\kappa T^{2} \mathrm{tg}^{3} \frac{\alpha}{2}} .
\end{aligned}
$$

Po dosazení tabulkových hodnot $\rho_{S} \approx 1410 \mathrm{~kg} \mathrm{~m}^{-3}$.

Úloha 6 - Štafle

Přístupů k úloze bylo mnoho. Většina z vás uvažovala poměr velikostí nějakých dvou sil, pǔsobících na rameno štaflí, a tento poměr položila do rovnosti s tangens nejčastěji poloviny úhlu svíraného rameny štaflí. Někdy takové postupy vedly ke správnému výsledku, trochu častěji však do záhuby. Nicméně ani v těch, ani v oněch skoro nikdo nezdůvodnil, proč co platí. Mnohem jasněǰ̌í byl postup pomocí momentů sil a součtǔ sil působících v nějakém bodě. Nejlepší mi připadal postup doc. Tomáse Braunera, a protože jsem nic lepšího nevymyslel (témě̌ vše ostatní vedlo k podstatně nechutnějsím rovnicím, často obludných stupňư), přiblǐ̌ně se jeho ̛̌ešení budu držet.

Pokud se tyyče hmotnosti M y̌taflí, někteří z vás ji uvažovali, jiní ne. V autorském řešení ji budeme uvažovat, a komu se to nelíbí, af si místo ní dosadí nulu.

K ̌̌ešení jsme nakreslili obrázek, pro přehlednost jsou síly působící na štafle znázorněny pouze na jednom jejich rameni; na druhé rameno přirozeně působí symetrické síly. Detailista, postrádající síly působící na druhé rameno, necht́si príloží k ose obrázku zrcadlo.

STAFLE_1.mf

1) Štafle jsou v klidu, tedy se nepohybují ani ve svislém směru vzhledem k Zemi. Tedy součet všech sil, působících ve svislém směru na štafle, je roven nule. Uvažme reakční sílu \vec{F}_{p} podložky. Platí $2 \cdot F_{p}=m g+M g$, odtud

$$
\begin{equation*}
F_{P}=\frac{m g+M g}{2} \tag{1}
\end{equation*}
$$

2) Součet momentů sil pŭsobících na jedno rameno sttaflí je vzhledem k libovolnému bodu tohoto ramene nulovy. Vy̆hodné je uvažovat momenty vzhledem ke špičce štaflí, protože se tak zbavíme síly F_{2}, kterou působí jedno rameno straflí na druhé.

Tedy:

$$
\begin{gathered}
F_{F} \cdot d \cdot \sin \frac{\alpha}{2}=\frac{1}{2} \frac{M}{2} g d \sin \frac{\alpha}{2}+F_{k} \cdot r \cdot \cos \frac{\alpha}{2}, \\
\frac{1}{2} m g d \sin \frac{\alpha}{2}+\frac{1}{2} M g d \sin \frac{\alpha}{2}=\frac{1}{4} M g d \sin \frac{\alpha}{2}+F_{k} \cdot r \cos \frac{\alpha}{2}, \\
\sin \frac{\alpha}{2} \cdot\left(\frac{1}{4} g d(2 m+M)\right)=F_{k} \cdot r \cos \frac{\alpha}{2}
\end{gathered}
$$

odtud

$$
\begin{equation*}
\tan \frac{\alpha}{2}=\frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}=\frac{F_{k} 4 r}{g d(2 m+M)} \tag{2}
\end{equation*}
$$

3) Vyjád ̌̌eme tǎ̌nou sílu pružiny. Necht l_{0} je délka pružiny v nenapínaném stavu, l délka pružiny, když jsou štafle v rovnovážné poloze.

Potom $F_{k}=k\left(l-l_{0}\right)$, přičem ̌̌ snadno z obrázku nahlédneme $l=2 r \sin \frac{\alpha}{2}$. Tedy

$$
\begin{equation*}
F_{k}=k\left(2 r \sin \frac{\alpha}{2}-l_{0}\right) . \tag{3}
\end{equation*}
$$

4) Do rovnice (2) dosad'me $F_{k} \mathrm{z}$ (3) a upravme:

$$
(2 m+M) g d \tan \frac{\alpha}{2}=4 k r\left(2 r \sin \frac{\alpha}{2}-l_{0}\right),
$$

což bohužel vede na rovnici čtvrtého stupně. Pouze pokud $\frac{\alpha}{2}$ je malé (do 5°), máme $\frac{\alpha}{2} \approx \tan \frac{\alpha}{2} \approx \sin \frac{\alpha}{2}$, a platí

$$
\frac{\alpha}{2} \approx \frac{4 k r l_{0}}{8 k r^{2}-(2 m+M) g d} .
$$

Zadání rekreačních úloh

Úloha 7. Prŭtrž novin

Ocelová kulička o hmotnosti m padá z výšky $h=h_{1}+h_{2}$ nad zemí volným pádem. Ve výçce h_{2} nad zemí jsou ve vodorovné poloze napnuty noviny. Kulička papír protrhne a dopadne na zem. Spočítejte, jaká energie se spotřebovala na deformaci a protržení papíru, znáte-li vy̌̌̌ky $h_{1}, h_{2}, h=h_{1}+h_{2}$, celkovou dobu pádu t a hmotnost kuličky m.

Úloha 8. Slunička
Jednoho dne, byla to tuším stř̌eda, Sluníčko potkalo druhé Sluníčko. Jenže to druhé Sluníčko bylo Antisluníčko z antihmotičky. Poté, co se Sluníčka pł̌átelsky objala, zjistila, že již nejsou Sluníčka, ale gamazâ̌̌níčko. A na vás je spočítat, kolik planetiček se neroztavilo.

Úloha 9. Souměrnosti

Zajisté existují tělesa, která jsou souměrná podle dvou os. Existují však tělesa, která jsou souměrná podle dvou stř̌edů ?

Úloha ∞. Psychologie

Na zadní stranu obálky s Vaším řešením napište právě jedno přirozené číslo. Za přirozená čísla považujeme množinu $N_{0}=\{1,2,3, \ldots\}$ Ptáte se, co z toho budete mít?

Vyhraje (a dostane body navíc) ten z vás, který napíse nejmenší přirozené číslo, které nenapís̃e nikdo jing. Takže musíte:

1. vymyslet své vlastní originální číslo.
2. musí bŷ́ pokud možno co nejmenší.

Zadání dalších témat

Téma 6. Hélium

Konstruktor Trurl vyrobil ondy stroj, kterýy dovedl vyrobit všechno, co začínalo písmenem h. Po nedávném katastrofálním fiasku se strojem vyrábějícím vše od n zvolil pro své pokusy raději toto, Y̌ekněme, více neutrální písmeno. Sotva stroj dokončil, nařídil mu na zkoušku vyrobit humus a hrobǎ̛íka. To mu však nestačilo, tak nakázal stroji vyrobit ještě hroudy, hafany, hraboše, haksny, hákovnice, hadry a hihňaly. Pak stroj musel udělat jě̌tě herinky, halefy, hromnice, hegemonii, Hirohita, hrušky a hudbu. Hudba se však př́liš̌ nepovedla, nebot současně s ní stroj vytvořil i hluk a hřmot. Po odstranění této drobné vady zjevně potě̌en jinak bezchybnou činností stroje poslal Trurl pro svêho dávného přítele a konkurenta Klapaciuse, který ochotně pozvání přijal, tě̌̌e se na další Trurlovu ostudu, již bude moci roztrubovat po všech vzdálených i blízkých vesmírech ještě nejmín další miliardu let. Trurl představil stroj Klapaciovi, vychvaluje mu přitom všechny přednosti stroje včetně optimální časové složitosti. Klapacius požadal svého kolegu, zda by si mohl také něco zkusit, načež zadal stroji vyrobit hejkaly, hastroše, hnidopicha, harakirí, Huyghense, Homéra, hobliny, hampejz, Himaláj, habešskou hymnu a hubeného hrocha. Dlouho pak přemŷ̌lele, jakou záludností by odhalil nějakou chybu přístroje, a tak zkusil ještě hlaholici, hnusny hamiltonián, hrubosrstou housenku, herbáx a hélium. To poslední v̌̌ak neměl říkat, protože stroj, zřejmě již trochu př̌ehřátý, se při výrobě hélia zasekl a přes ustavičné kopance obou konstruktorů tvrdỡíjně pokračoval ve vyrobě tohoto na Zemi jinak vzácného plynu. Teprve po desetimiliontém kopanci se stroj hluboce urazil, roztáhl ky̌ídla, vysolil na oba slovutné kolegy 15000 šlavnatých nadávek od písmene h a plivaje diody odletěl neznámo kam.

Vaším úkolem bude odhadnout všechny důsledky tohoto pohnutého příběhu, ke kterým na Zemi dos̃lo. Posmĕ̃nné letáky a pomluvy, které Klapacius od té doby o Trurlovi trousil po všech sousedních galaxích, raději
nepočítejte, jelikož byste se nedopočítali. Vaše práce bude zajisté nelehká, nebot hélia se stačilo vyrobit přesně 5 . $10^{18} \mathrm{~kg}$. Mladším ̛̌ě̛itelům připomínám, že původní atmosféru tvơ̌enou směsí vzduchu a olova zně̌kodnil konstruktor Trurl za pomoci přístroje zvaného "Zemanův kuf̛̂ik" již v jednadvacátém století, což tehdy na newyorské burze vedlo k rapidnímu vzestupu akcií společností vyrábějících skafandry.

Téma 7. MAGICKA ZRCADLA - Uvodní úloha: Křivá zrcadla

Pan X má xicht tvaru přesného čtverce, na čemž si velmi zakládá. Navíc má tento vážený měšlanosta x̃andy tvaru písmene H. Pan X je sousedem pana Y. Jednou ukradl pan X panu Y slepici, za což se rozkaceny pan Y rozhodl pomstít. Sestrojil několik zrcadel, do kterych když se pan X podíval, musel se nutně zhrozit, nebot́ v jednom spaty̌il místo skvělého čtverce obludny kruh, ve druhém kosočtverec, ve třetím ǩ̌̌̌̌ek ve tvaru písmene x, ve čtvrtém pak svǔj xicht zrotovany o 45°. X̉andy pak zjevily se mu v podobě mnoha pitvorných útvarů jeho důstojnost znevažujících. Pan X se rozhodl nezůstat obtloustlému panu Y s kulatoučkou tvárič̌kou nic dlužen, a tak vyrobil jiná zrcadla, v nichž se chudák pan Y zy̌el coby odporný čt verec, ubohá úsečka či dokonce tvrdé Y! Není proto divu, že oba pánové na sebe podali žalobu pro urážku osobnosti. Soud sice svolal světoznámé odborníky z oboru optiky k odbornému posouzení žalob, jenže při převozu zrcadel na soudní dvůr došlo k jejich rozbití. Żaloby pak byly pro nedostatek důkazů staženy. Dodnes tedy nevíme, jak zrcadla vypadala. Dokážete je alespon̆ matematicky rekonstruovat, popřípadě ukázat, že si jejich existenci pan X či pan Y vymysleli ku vzájemnému očernění?

Mưžete se zabyvat i zrcadlením jiných útvarů na jiné útvary. Zrcadla mư̌̌ete používat

- pouze zakřivená,
- zakřivená i zalomená.

Až vás to přestane bavit, zkuste si představit, že se např. pan Y kouká ̌̌ikmo do zrcadla na pana X, a vymyslete, jaké by to zrcadlo muselo byt, aby pan Y pozoroval místo kolečka třeba sinusoidu nebo nekonečně mnoho soustředných krǔ̌nic.

Téma 6. Císla
Pravěcí lidé znázorňovali čísla počtem kamínků a jiných malých předmětǔ (říkáme tomu unární soustava). Poté přišli na to, že ke znázornění velky̌ch čísel je tento způsob nevhodny. Rímané vymysleli svou f̌ímskou soustavu, při které používají písmen k označení číslic rủzných čádů. Kdo zná tuto soustavu, ví, jak je složitá a nepraktická. Proto byl vymy̌̌len nový způsob zápisu reálných čísel pomocí mocninné f̛ady. Dnešní člověk počítá obvykle v desittkové soustavě, při které je použito číslic 0-9. Přesto i ta je na početní operace přílǐ̌ složitá a počítače použivají nejjednoduž̌̌í mơ̆ny binární zâpis čísel pomocí číslic 0 a 1.

Počítání v této soustavě je neobvykle jednoduché, ale také není dokonalé. K zápisu záporných čísel potřebujeme speciální znak - před číslem. Přitom je možno sestrojit soustavu o základu -2, která se chová jako binární soustava (používají se cifry 0 a 1), ale ve které není většího rozdílu mezi zápisem kladných a záporných čísel. Kdo zná komplexní čísla, ví, že se obvykle zapisují jako součet reálné a imaginární čísti ($\varphi=a+b i$). Pokud ovšem použijeme soustavu o základu $\sqrt{2} \cdot \mathrm{i}$, zjistíme, že jedním zápisem (pomocí 0 a 1) obsáhneme všechna komplexní čísla, nepotřebujeme je tedy psát v původním složitém tvaru. Zápisy všech čísel se nám takto maximálně sjednotily a zjednodušily.

Vaším úkolem je vybrat si z vy̌̌e uvedených soustav některou, která se Vám nejvíc líbí a popsat, jak se v takové číselné soustavě sčítá, odčítá, násobí, dělí, odmocňuje. . . a uvážit, ktery způsob je nejvhodnêjsí.

Uzávěrka dalšího čísla je 31. března. 1997

Adresa semináry̌e:
M\&M - B1507, VŠK 17. listopadu, Pátkova 3, 18200 Praha 8, Liben̆

[^0]: ${ }^{1}$ Bez újmy na obecnosti

[^1]: ${ }^{2}$ redakce samozřejmě takovy program sestrojila a ví to

[^2]: ${ }^{3}$ ty to obrázky jsme nepřéekreslovali

[^3]: ${ }^{4}$ viz učebnice programován

