M\&M číslo 2 ročník III

Abstract

Milí řešitelé, tak jeme vydali dalšíčćslo časopisu. Tentokrát nebude úvodník tak dlouhy jako v minulém čísle, nebof̉ jsme

- Ačkoli byl termín uzávěrky stanoven na 11. listopad, každý den nám docházejí další a další Y̌ešení. Rozhodli jsme se, že tato $̂$ ̛̌ešení již̌ nezahrneme do tohoto čísla časopisu, ale také je nevyhodíme do koše. Clánky a body za ně přidělené budou aktualizovány v dalším čísle. Podobny postup byl stanoven i u rekreačních úloh, ale protože jejich opravování trvá krať̌í dobu, je moz̆né, že budou opraveny dŕ̛ve. Proto se nedivte, dojdou-li vám zpět např. pouze rekreační úlohy.
- V každém čísle časopisu budou autơ̌i jmenováni s tituly, které získali ď̛íve, nebof nové body budou přiděleny až po otisknutí článku. Ve výsledkové listině je uveden u každého autora jak součet bodů za všechny ročníky, během kterých řešil seminâ̌̌, tak součet bodủ za tento rok (podle kterého bude tříděna tato tabulka).
- Je mi to trapné, ale musím mnoha řě̌itelům připomenout, co to je vědecký článek. Jako takovy by měl obsahovat název, krátky text o tom, co je jeho obsahem, samotny obsah včetně příslušných náčrtkủ, grafủ. . a krátky
 dalo nazvat konceptem při
- Děkujeme bc. Pavlovi Habudovi, ktery využil možnosti, kterou jsme chtěli původně navrhnout ǎ̌ v tomto čísle, a to publikování vlastních výzkumŭ. Za zaslanou rekreační úlohu, kterou zatím nepřetiskujeme (autor však za ni dostal plný počet bodŭ), děkujeme. Nicméně přetiskujeme jím navrhnuté téma (ke kterému bohužel zatím neposlal žádný pŕ̛spě̌vek).
- Vzhledem k tomu, že naše finanční prostředky jsou omezené, rozhodli jsme se, že nebudeme posílat časopis těm ̛̌ě̌itelům, kteří nezašlou žádné příspěvky do dvou po sobě následujících čísel.

To je vše, př̌ejeme vám mnoho úspěchů při dalším vašem bádání.
za redakci Robert

Téma 1 - TROSEČNíCI

MĚŘENÍ ZEMĚPISNÉ Š̌̌ǐKY

Jaroslav Janský, Radomír Budínek: Jak vủbec zjistit, na které jsem polokouli? Zjistím, jestli je Slunce víc na jih nebo na sever (mám kompas).

doc. Tomáš Brauner, dr. Daniel Klír: Měření velikosti tíhového zrychlení

Tato metoda využivá známého faktu, že tíhové zrychlení závisí na zeměpisné sisirce. Největší tíhové zrychlení je na pólu (asi $9,87 m \cdot s^{-2}$) a nejmenší na rovníku (přibližně $9,78 m \cdot s^{-2}$). Fluktuace na rovníku, jak se dočetl doc. T.Brauner v knize V.Vanýska Základy astronomie a astrofyziky, dosahují max. hodnot asi $0,0005 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. V roli trosečníka se nacházíme někde při hladině mơ̌ské, to znamená, že změně velikosti tíhového zrychlenís vy̌̌kou nemusíme věnovat pozornost. Tíhové zrychlení lze změ̌rit poměrně přesně např. matematickŷm kyvadlem. Platí

$$
g=\frac{4 \pi^{2} l}{T^{2}}
$$

kde l je délka vlákna a T perioda kyvadla.

Najděme závislost g na zmp. zisirce φ :

- Velká poloosa rot. elipsoidu představujícího Zemi je $a=6378,2 \mathrm{~km}$.
- Malá poloosa téhož je $b=6356,9 \mathrm{~km}$.
- Hmotnost Země uvažujme $M=5,98 \cdot 10^{24} \mathrm{~kg}$.
- Perioda rotace Země je $T=86164 s$.

Na obrázku jsou znázorněny síly gravitační F_{g} a odstř̌edivá $F_{0} . x$-ová složka výsledného zrychlení je

$$
\begin{aligned}
a_{x} & =-\frac{\kappa \cdot M}{r^{2}} \cdot \cos \varphi+x \cdot \omega^{2} \\
y & \approx b \sin \varphi \\
x & \approx a \cos \varphi \\
\omega & =\frac{2 \pi}{T} \\
r & =\sqrt{x^{2}+y^{2}},
\end{aligned}
$$

y-ová složka zrychlení je

$$
a_{y}=-\frac{\kappa M}{r^{2}} \cdot \sin \varphi
$$

tíhové zrychlení pak má velikost

$$
g=\sqrt{a_{x}^{2}+a_{y}^{2}}
$$

odkud mů̌̌eme určit φ.
Neméně zajímavá je teorie dr. Daniela Klíra, který čerpal z publikace Svět očima fyziky:

Nechť φ je geografická šị̂̂ka, φ^{\prime} je geocentrická žîri̛ka. Z kosinové věty (viz obrázek) plyne vzorec (1):

$$
g=\sqrt{a_{g}^{2}+R_{z}^{2} \cdot \omega^{4} \cdot \cos ^{2} \varphi^{\prime}-2 \cdot a_{g} \cdot R_{z} \cdot \omega^{2} \cdot \cos ^{2} \varphi^{\prime}} \approx a_{g} \cdot \sqrt{1-\frac{2 R_{z} \cdot \omega^{2} \cdot \cos ^{2} \varphi^{\prime}}{a_{g}}}
$$

avšak Země není koule, a proto budeme muset za R_{z} dosadit R_{φ}. Sinová věta:

$$
\frac{\boldsymbol{a}_{o}}{\sin \left(\varphi-\varphi^{\prime}\right)}=\frac{\boldsymbol{g}}{\sin \varphi^{\prime}},
$$

a dále

$$
\varphi-\varphi^{\prime} \approx \sin \left(\varphi-\varphi^{\prime}\right)=\frac{a_{o}}{g} \cdot \sin \varphi^{\prime}=\frac{R_{z} \cdot \omega^{2} \cdot \cos \varphi^{\prime} \cdot \sin \varphi^{\prime}}{g} \approx \frac{R_{z} \cdot \omega^{2} \sin 2 \varphi}{2 g}
$$

V prvním přiblí̌̌ení mǔ̌̌eme Zemi považovat za elipsoid, pro velkou poloosu a malou poloosu b platí:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

a pro tuto elipsu (svisly y̌ez elipsoidem)

$$
\tan \varphi=\frac{a^{2}}{b^{2}} \cdot \tan \varphi^{\prime},
$$

poloměr

$$
R_{\varphi}=\frac{a \cdot b}{\sqrt{b^{2} \cdot \cos ^{2} \varphi^{\prime}+a^{2} \cdot \sin ^{2} \varphi^{\prime}}},
$$

a tedy dle předešlého je

$$
R_{\varphi}=a \cdot \sqrt{\frac{\cos \varphi}{\cos \varphi^{\prime} \cdot \cos \left(\varphi-\varphi^{\prime}\right)}}
$$

Po dosazení tohoto poloměru R_{φ} za R_{z} obdržíme ze vzorce (1) přesnějy̌̌í hodnotu g.
Problémem určení zmp. polohy pomocí mě̌ení velikosti tíhového zrychlení se zabývali i jiní autơ̆i (mgr. David Holec, mgr. Ondřej Přibyla, mgr. Jan Fätor). Radomír Budínek napŭ. navrhl užít ke změ̌̌̌eníg reverzního kyvadla, dr. Václav Račanský předpokládal, že utonuly fyzik vlastnil mapu světa s velikostmi tíhového zrychlení. Navrhovali jste tê̌̌ měřit g pomocí kuželového kyvadla nebo doby volného pádu kuličky. Jako redaktor poznamenávám, že volný pád rozhodně není dobrá metoda jak g změrit - pokud ovšem nemáme to potě̌ení využít vŷhod vakua.

doc. Tomáš Brauner: Magnetická indukce Země

V principu by se dala zmp. zicirka změ̌̌it určením velikosti a směru mag. indukce Země v daném místě pomocí magnetky zjistíme směr mag. indukce (horizontální): k magnetce dám cívku o známé indukčnosti a mê̌ím proud, který je potřeba, aby mag. pole cívky vyrovnalo zemské mag. pole (po vychylení magnetka nekmitá - nevrátí se do pǔvodní polohy). V praxi ale tato metoda nebude přiliš̌ oplyvat přesností vzhledem k různým mag. anomáliím (ložiska magnetovce apod.) Obávám se, že tak zjïstím pouze to, co už mư̌̌u odhadnout napy̌. z charakteru podnebí - kdyy̌ tam budou palmy, tak asi nejsem za polárním kruhem atp.

dr. Daniel Klír, doc. Tomáš Brauner: Výška Slunce nad obzorem

Pro danou zmp. 九̌siřku je v určity den Slunce v poledne nad obzorem pod určitým úhlem. Tento úhel je poměrně jednoduše zjistitelny vzhledem k tomu, že obzor bude určovat hladina moře, a pak jej snadno naměríme nějakým úhloměrem (lze jednoduše sestrojit, nebo jej měl utonuly fyzik v kajutě), sextantem...Jinou možností je měrení délky stínu tyčky, jejî́̌ délku známe. Tuto metodu navrhl Jaroslav Jánskŷ: Do země na vodorovné rovině zabodnu tyč známé délky d (změ̌ím metrem). Dále změ̌̌ím délku stínu tyčé. Pro úhel určující vy̧̌̌ku Slunce nad obzorem platí:

$$
\frac{d}{l}=\tan \alpha
$$

odtud

$$
\alpha=\arctan \frac{d}{l}
$$

kde α je vyčka Slunce nad obzorem

Platí vztah: $\alpha=90^{\circ}-\varphi+\delta$, kde

- φ představuje zeměpisnou žířku,
- α úhlovou vy̌̌ku Slunce nad obzorem a
- δ je sluneční deklinace, neboli úhlová odchylka Slunce od světového rovníku během roku. (Tak např. pro 21.3. a 23.9., kdy nastává rovnodennost, je $\delta=0^{\circ}$ a pro letní/zimní slunovrat (21.6., 21.12.) je $\delta=23$, 5°, resp. $\delta=-23,5^{\circ}$.)

Odtud též plyne to, co mgr. Ondřej Přibyla doplnil pro vyšku Slunce nad obzorem v poledne ve speciálních pľípadech:

- $\alpha_{\text {poledre }}=90^{\circ}$, pokud je jarní nebo podzimní rovnodennost,
- $\alpha_{p o l e d r e}=66,5^{\circ}$, pokud je letní nebo zimní slunovrat, nebof́ odklon zemské osy od Slunce nabyvá hodnot $\left\{90^{\circ} \pm 23,5^{\circ}\right\}$.

Pro obecné datum najdeme příslušnou deklinaci v určitý den v tabulkách, které měl utonuly fyzik jistě prozf̌etelně u sebe. Metodou pozorování Slunce se zabývali též dr. Vaclav Račanský, mgr. Jan Fátor a mgr. David Holec, avšak ne tak úspě̌ně.
doc. Tomáš Brauner: Obecné určení zmp. šířky
Autor nalezl obecné určení zmp. šîřky v libovolné známé datum bez tabulek - sluneční deklinaci si spočítal:
Mệ̌me maximální vy̌šku Slunce nad obzorem během dne - rotační osa Země je vzhledem ke směru kolmému na rovinu oběhu Země kolem Slunce skloněna o $23,5^{\circ}$. Mě̌íme-li čas od jarní rovnodennosti a je-li Ω úhlová rychlost oběhu Země kolem Slunce, pak sluneční paprsky dopadají kolmo na povrch Země v zeměpisné žířce

$$
\alpha \approx 23,5^{\circ} \cdot \sin \Omega t
$$

($\alpha>0$ pro severní a $\alpha<0$ projižní polokouli). Je $\alpha_{0}=23,5^{\circ}$.

Z obrázku plyne

$$
\sin \alpha=\sin \alpha_{0} \cdot \sin \Omega t
$$

Známe-li datum Ωt, mǔžeme určit α. Pak, je-li β maximální yy̌ša Slunce nad obzorem během dne, platí pro zmp. Šǐ̛ku φ :

$$
\beta+\varphi-\alpha=90^{\circ}
$$

odtud

$$
\varphi=90^{\circ}+\alpha-\beta .
$$

doc. Tomáă Brauner: Polohy hvězd

Zmp. šiň̌̌u mưžeme určit porovnáním polohy stálic - napy̌. Polárky (pokud jsme na severní polokouli) -
 podle hvězdy sigma okta. mgr. Ondřej Přibyla dopln̆uje k pozorování Polárky: Nechtí \vec{v}_{1} a \vec{v}_{2} jsou vektory směřující k Polárce. Jestlǐ̌e položíme vzdálenost Polárky od Země rovnou nekonečnu, pak $\vec{v}_{1} \| \vec{v}_{2}$. Proto je vy̌sk ka Polárky nad obzorem přímo zmp. síř̌kou pozorovatele.

P̛̛i určování zmp. ̌̌. postupujeme podobně jako u předchozí metody využívajícího Slunce. Pať̛ičné soư̌adnice hvězd je třeba najít v tabulkách. Mě̌̌ení pomocí polohy hvězd navrhli jě̌tě např. mgr. Jan Fator, mgr. David Holec. Radomír Budínek navrhuje využít hvězd, které jsou v nadhlavníku anebo těch, které se "taktak" ukážou nad obzorem, a pak použít tabulky.
dr. Daniel Klír podle uvedené literatury: Polohy hvězd
Poznámka: článek uvádíme pro zajímavost, autor do jisté míry citoval z literatury. Vzorcc̉ se nelekejte, snad jsou dobře.

Tato metodaje velice podobná mě̌ení polohy Slunce. Na hvězdárnách, kde jsou pevně postaveny poledníkové kruhy (lze z pomŭcek fyzika postavit) změ̌̌íme přímo meridianní zenitovou distanci nâ̌̌izených hvězd, tj. zenitovou distanci za doby jejich vrcholení. Označme tuto distanci v. Horní kulminace jižně od zenitu je potom $\Phi=\delta+v$, horní kulminace severně od zenitu je $\Phi=\delta-v$. Dolní kulminace $\Phi=180^{\circ}-(\delta+v)$, kde δ opět představuje deklinaci hvězdy. Pozoruje-lỉ se hvězda blí̌e pólu v obou kulminacích, značí v a v^{\prime} meridianní zenitovou distanci v horní a dolní kulminaci a δ a δ^{\prime} deklinace za doby pozorování, pak plyne z rovnice $\Phi=\delta-v$ a $\Phi=180^{\circ}-\left(\delta^{\prime}-v^{\prime}\right)$ hodnota $\Phi=90^{\circ}-0,5\left(v+v^{\prime}\right)+0,5\left(\delta-\delta^{\prime}\right)$. Jsou-li na observatoři k dispozici přenosné přístroje jako univerzály, sextanty aj., pozoruje se f̛ada zenitových distancí poblî̌̃e a po obou stranách poledníku (metoda circummeridianních distanc zenitových) a vypočtou se z pozorovaných zenitových distancí z meridianní zenitové distance v, z nichž ihned podle vy̆se uvedenych vzorců spočteme zmp. šiř̌ku. Vzorce:

$$
\sin \frac{1}{2}(v-z)=-\frac{\cos \varphi \cdot \cos \delta}{\sin \left[\frac{1}{2}(\varphi-\delta+z)\right]} \cdot \sin ^{2}(t / 2)
$$

pro hơ̌eješí kulminaci, jižně od zenitu,

$$
\sin \frac{1}{2}(v-z)=-\frac{\cos \varphi \cdot \cos \delta}{\sin \left[\frac{1}{2}(\delta-\varphi+z)\right]} \cdot \sin ^{2}(t / 2)
$$

pro hořejǒí kulminaci, severně od zenitu,

$$
\sin \frac{1}{2}(v-z)=\frac{\cos \varphi \cdot \cos \delta}{\sin \left[\frac{1}{2}(\delta+\varphi-z)\right]} \sin ^{2}(t / 2)
$$

pro dolejší kulminaci dávají $v-z$ redukci pozorované zenitové distance z na meridianní zenitovou distanci, t jest hodinový úhel, na pravé straně vzorcủ je však třeba volit aspon̆ přibližnou hodnotu zmp. ̌̌isřky. Proto je tato metoda dobrá hlavně na zpřesnění odhadu, jakou zmp. zîř̌ku má ostrov. Dále se písie: "K redukci pozorování Polárky, jizz lze k určení polární výšky s výhodou použití libovolného hodinového úhlu, potřebuje se řad, které postupují podle mocnin pólové distance $p=90^{\circ}-\delta$. Tak lze polární vẙšku vyjádřit ve tvaru: $\Phi=90^{\circ}-z-p \cdot \cos t+0,5 p^{2} \sin 1^{\prime \prime} \cdot \operatorname{cotg} z \sin ^{2} t$ přesně na $1^{\prime \prime}$. Výpočet se zjednodus̆́t podle tabulek, jež se také udávajı́v v astronomických efemeridách. Jsou-li δ, δ^{\prime} deklinace dvou hvëzd, z nichz̆ jedna vrcholí jž̌ně od zenitu, druhá severně od zenitu, a jsou-li v a v^{\prime} jejich meridianní zenitové distance, pak platí pro polární výšku $\Phi=\delta+v$ a $\Phi=\delta^{\prime}+v^{\prime}$ a jejich sečtením dostaneme $\Phi=0,5\left(\delta+\delta^{\prime}\right)+$ $0,5\left(v-v^{\prime}\right)$. Při užití této rovnice se tedy nevyžaduje určení absolutních zenitových distancí, nýbrž jen jejich rozdîl, jenž se mě̆̌̆ mikrometricky."

Čerpal jsem z poněkud starší literatury, je tedy možné, že některé výrazy a výpočty jsou zastaralé. Použitá literatura: OSN.

Poznámka redaktora. Jistě jste postřehli, že se v tomto příspěvku hemží větš̌i množství odborných pojmủ, které ne každému musí být na první pohled jasné. Dovoluji si proto dodat některé vysvětlivky (znáte-li přesnêjší definice, mữ̌ete nám je sdělit - nicméně body navíc za ně nebudou):

1. Soư̌adnicovy systém užívany astronomy má tyto soư̌adnice: deklinaci a rektascensi. Rektascensi mě̌íme podél rovníku, deklinaci kolmo k rovníku. Deklinace je úhlová vzdálenost hvězdy od rovníku, udává vy̌̌ku hvězdy nad obzorem. Rektascense (rovníková soư̆adnice hvězdy) je úhel, ktery s vírají deklinační kružnice procházející jarním bodem a hvězdou. Jarní bod je ten ze dvou průsečíků nebeského rovníku s ekliptikou, v němと̆ je Slunce 21. března. Napǔ.:

- Deklinace severního pólu je $+90^{\circ}$,
- deklinace jižního pólu je -90°.
II. Meridianní zenitová vzdálenost, zenitová distance Distance=vzdálenost. Meridián=nebeský poledník, tj. myšlená čára na světové kouli procházející zenitem pozorovacího místa a oběma světovými póly. Zenitová vzdálenost je úhel, který svírá záměrná přímka (na hvězdu) se směrem k zenitu (nadhlavníku). Přitom:
- světová koule je myšlená koule s libovolným poloměrem a se středem v zemském středu nebo v pozorovacím místě, na kterou promítáme polohy nebeských těles.
- zenit je myšlený bod na obloze, od kterého je možné vést svislici na místo, kde je pozorovatel (též nadhlavník).
III. Kulminace je průchod nebeského tělesa poledníkem. Horní kulminace je poloha nebeského tělesa nejvy̌se nad obzorem. Dolní kulminace je poloha neb. tělesa nejn㲎e pod obzorem.
IV. Astronomické efemeridy jsou tabulky udávající polohy nebeskŷch těles.

Prop̌ístitě prosím všechny autory, ktex̂í se rozhodnou užívat takto a více odborných pojmů, aby je tễ̃ podrobně vysvětlili pro nezasvěcené.
dr. Vaclav Račanský: Mêření délky dne
Zmêříme si délku dne a zjistíme datum. Potom jsme schopni za předpokladu, že právě není rovnodennost, vypočítat zmp. šiř̌ku. Hlouběji se autor problémem nezabýval, doporučujeme jej tedy jako námět k dalším příspěvkūm.

MĚŘENÍ ZEMĚPISNÉ DÉLKY

Příspěvků tŷkajících se určení zmp. délky bylo podstatně méně než těch o zmp. čîřce. Uvádíme je proto témêř̌ v původním znění.

doc. Tomáš Brauner:

Zmp. délka není fyzikální veličinou a byla zavedena člověkem (nevidím žádny rozumny důvod, proč by měl nulty poledník procházet zrovna Greenwichem). Proto musíme při jejím určení použít jinou veličinu zavedenou člověkem, nap̂̌. pásmovy čas. Máme-li zachovalé hodinky a víme tedy, jaky je čas v místě vyplutí lodi, můžeme pozorováním dob východu, resp. západu Slunce, resp. hvězd určit časovy posun a tím i zmp. délku našeho dočasného (autor uvádí dočasného) útočiště (samozř̌ejmě k tomu potřebujeme i datum).

dr. Daniel Klitr: Určení zmp. délky

Místa ležící na stejném poledníku, tj. místa se stejnou zmp. délkou, majíi v každém okamžiku ty̌̌ čas. Místa s různou zmp. délkou mají jiny místní čas (neberu v úvahu čas časovych pásem) a tedy rozdíl místních časů (určím dle východu Slunce pro určity den) je roven rozdílu zmp. délek - vyjádřeni v časové míře. Pak je k určení rozdílu zmp. délek třeba znát pro jeden okamžik rozdíl správnŷch místních časủ.

Mezi nejpoužívanêjjǐí metody k určení zmp. délky paty̌í tyto:

1. Pozorování dvou úkazů na nebi ve stejny čas na dvou místech - to je neproveditelné, protože nevíme, v jaké zmp. délce a kdy bude námi pozorovany úkaz viděn. Leda kdyby měl u sebe fyzik ně̀jakou mapu oblohy pro různá místa a údaje o tom, kdy je mưžeme v jakých místech vidět. Což je možné.
II. Jde o toté̂̃ co bylo v 1. metodě. Pozorováním úkazủ na nebi, které se sice v různých místech na nebi vyskytují v jiný čas, ale lze je snadno převést na týy̌ absolutní okamžik, nap̌̌. pozorování přechodủ Merkura a Venuše před Sluncem, pokrytí planet a hvězd Měsícem, zatmění Slunce údajně poskytují dobrá data k určení zmp. délek míst. Pozorujeme-li začátek nebo konec úkazů v místním čase, jelikož známe svoji zmp. širỉku (viz metody A), mư̌̌̌eme čas převést pro střed Země a porovnáme s časem také pro střed Země a určíme zmp. délku.
III. Jedna z nejužívanějších metod je tato: Metoda distancí Měsíce od Slunce, planet a jasnějsích hvězd. V nautických ročnících se udává vzdálenost Měsíce od Slunce, hl.planet atd. pro každou třetí hodinu určitého meridiánu pro střed Země. Převede-li se vzdálenost Měsíce pozorovaná na nějakém místě dle místního času na distanci pro střed Země a vyhledá-li se pro tuto vzdálenost v nautických ročnících či astronom. příručkách py̌íslušny čas prvního meridiánu, dá rozdíl pozorovaného místního času a času prvního poledníku rozdíl zeměpisné délky mezi daným místem a pruním poledníkem.
IV. Další metoda je použitím faktu, že Měsíc mění rychle svou rektascensi. Jsou-li rektascense Mĕ́ćce při vy vrcholení têhož̃ dne známy pro dvě místa, mǔžeme z jejich rozdílu spočítat zmp. délku.
V. Přenos hodin a pak porovnání s místním časem je neproveditelny.
VI. K pozorování pozemských signálů je také třeba znát nějaké údaje, které se nedají zjistit.

Jaroslav Jánský:

Předpokládám, と̌e po profesorovi zbyly hodiny seřízené na Greenwichsky čas. V pravé poledne (to je okamžik, kdy je Slunce nejvŷ́) si tento Greenwichsky čas zjistím. Z rozdílu místního a Greenwich. času vzpočtu zmp. délku.

Vím totiž, že za 24 hodin se Země otočí o 360°. Odtud

$$
z . d .=\frac{\left(t_{G}-t_{m}\right) \cdot 360^{\circ}}{24 \cdot h}
$$

mgr. Ondřej Přibyla:
Známe-li světový čas, pak můžeme určit zmp. délku. O jarní a podzimní rovnodennosti Slunce zapadá přesně na západě a vychází přesně na východě.

180°
Na obrázku hledíme na Zemi "shora." Změ̌íme α přesně ve chvíli, kdy je 12^{00} světového času (ten musím znát). β pak získám jako $\beta=90^{\circ}-\alpha$. Pokud je více než 12^{00} mého místního ostrovního času (tedy na ostrově už poledne bylo), leží ostrov na β stupni východní délky, pokud je méně než 12^{00} místního času, pak leží ostrov na β stupni západní délky.
doc. Tomáš Brauner: Měřenení vedoucí ke zjištění zmp. šířky i délky
Jestliže máme radiopřijímač a dobrou anténu, mŭžeme najít směr ke dvěma vysílačŭm se známou polohou. Vynesením těchto směrů na mapu (resp. glóbus) získáme jejich průsečík, který je místem, kde se nacházíme. Na totễ priisel mgr. Jan Fátor.
mgr. Jan Fátor:

Pokud budou k dispozici (podrobné) mapy např. salinity vody, teploty vzduchu, hloubky oceánu. .. , potom mohou posloužit jako pomocné prostředky k dříve uvedeným metodám určování polohy.

NÁMĚTY DO DALŠínO ĆÍSLA

Některé vás třeba napadly některé další metody, ale př̂liň̌ joste se jimi nezabývali, něco taky napadlo nás a myslíme si, že by bylo zajímavé se tím dále zabyvat.

- Dva autoři navrhli užít GPS přístroj. Jako redaktor nevím, co to je a jak to funguje.
- Mě̛̌ení mag. indukce Země by pro nás bylo smysluplné, pokud bychom znali nějaký vztah mezi touto indukcí a zmp. polohou (aspon̆ přibližny).
- Kdyby někdo náhodou věděl, jak určit polohu z mê̌̌ení salinity, necht̉ dá vědět.

Naše nápady:

- Foucaultovo kyvadlo
- Nešlo by jě̌tě nějak (aspon̆ k určení polokoule) využít Corriollisovu sílu? Na kterou stranu se bude točit vír vody vytékající z vany na severní polokouli?
- Kdy̌̌ je Měsíc částečně zastíněny Zemí, jeví se nám jako srpek. Možná by mohl mít nějakou vlastnost související se zmp. polohou pozorovatele.

Téma 2 - HRÁCH

Vzhledem k tomu, že na mnoho ̛̌ešení vás px̌išion vícero, jevilo se mi lepší strukturovat text na příspěvky k jednotlivým strukturám (uspờádáním) koulí.

IDEÁLNÍ HRÁCH

doc. Tomắs Brauner: ŘEŠENf číslo 1. Krychlová soustava (uvedli všichni, kdo téma řešili)
Všichni autơ̆i nalezli uspơ̆ádání hrachů takové, že středy koulí ležících v rovinẽ tvơ̌̌í čtvercovou sílí o straně $2 R$. Vrstvy potom klademe na sebe tak, aby středy koulí v k-té vrstvě byly právě nad středy koulí v ($k-1$)-té vrstvě. Středy koulí tedy v prostoru tvoří krychlovou síl. Není těžké zjistit, že do krychle se v tomto uspořádání vejde $20^{3}=8000$ hrachù.

Doc. Tomáš Brauner k tomu určil následující (procentuální zaplnění elementární buňky): Elementární buňka necht je krychle o straně $2 R$ opsaná kouli. Pak je tato buňka zaplněná

$$
z=\frac{\frac{4}{3} \pi R^{3}}{8 \cdot R^{3}}
$$

odtud

$$
z=\frac{\pi}{6} \approx 0.52
$$

To je dost málo, existují vŷhodnějesí způsoby.

$$
\text { mgr. Jitka Spoustová: ǨEŠENf č. } 2
$$

Mějme jednu vrstvu z řešení 1 . Na ni položme druhou tak, ěe je oproti y̌ešení 1 posunuta v jednom směru rovnobě̃̌ném s hranou čtverce čtvercové sítě (tj . rovnoběžně s vodorovnou hranou krychle), a to tak, aby kuličky v liché vrstvě byly "v dolíku" mezi dvěma sousedními ve spodněǰ̌í vrstvě, profil viz. obrázek.

V liché vrstvě bude tedy o 1 Y̌adu 20 -ti kuliček méně, tj. jen $19 \cdot 20=380$. Jitka dále počítala, kolik lichých a sudých vrstev (aby se střídaly) se vejde do vy̌šky dané krychle o straně délky 10 cm :

Z obrázku je vidět, že

$$
v=\sqrt{d^{2}-\left(\frac{d}{2}\right)^{2}}=\frac{d}{2} \sqrt{3} \approx 0,433
$$

Snadno spočítáme, že se nad sebe vejde (aby se střídaly) 11 lichých a 11 sudých vrstev. Poslední horní Y̌ada, která se u ̌̌̌ nevejde celá, je lichá. 21. i 22 . ̛̌ada mohou, jak se dá lehce ově̌rit, obsahovat obě 20×20 kuliček a ještě se vejdou do krychle. Lze tedy docílit 12 vrstev po $20 \times 20=400$ kuličkách a 10 vrstev po $19 \times 20=380$ kuličkách. Dohromady se tedy vejde tímto způsobem 8600 hrachủ.

doc. Tomás Brauner, mgr. Jitka Spoustová: RESEN1 č. 3

Středy koulí ve vodorovné rovině necht̉ twợí čt vercovou síĺ jako v f̛ě̛. 1 a 2 . Jednotlivé vrstvy jsou však posunuty tak, že každá koule z vyčisí než první vrstvy se nalézá " v dolíku" mezi čty̌̌mi koulemi pod ní:

$$
z=\frac{\frac{4}{3} \cdot \pi \cdot R^{3}}{8 \cdot R^{3}}
$$

odtud

$$
z=\frac{\pi}{6} \approx 0,52 .
$$

Z trojúhelníku $P S_{C} S_{E}$ plyne $v=\sqrt{4 R^{2}-2 R^{2}}=R \cdot \sqrt{2}, v=R \cdot \sqrt{2}$. Elementární buňka obsahuje $\frac{1}{2}$ koule E a $\frac{1}{8}$ koulí A, B, C, D, tj. celkem jednu kouli.

$$
z=\frac{\frac{4}{3} \cdot \pi \cdot R^{3}}{4 \cdot R^{2} \cdot v}=\frac{\pi \cdot \sqrt{2}}{6} \approx 0.74
$$

To už je lepší zaplnění prostoru než ̛̌ešení 1 , existuje však ještě lepší.
Na toto đ̌ešení dále p̌̌išli:

- Jaroslav Jánský, ktery do krychle takto nacpal 14459 kuliček, ale nepíše jak,
- mgr. Jitka Spoustová: odvod̉me výšku v mezi středy hrachů ve dvou sousedních vrstvách nad sebou. Všimneme si přitom, že středy čtyy̌ koulí elementárního čtverce sítě nějaké vrstvy a střed koule o vrstvu vy̧̆e mezi tyto čtyři koule zapadající t vơ̌í pravidelny čtyřboký jehlan, jehož každá hrana má délku d.

Z obrázku vidíme a pomocí Pythagorovy vĕty odvodíme

$$
x=\sqrt{2 \cdot\left(\frac{d}{2}\right)^{2}}=\sqrt{\frac{d^{2}}{2}},
$$

$$
v=\sqrt{d^{2}+\frac{d^{2}}{2}}=\frac{d}{\sqrt{2}} .
$$

Dále spočteme, že lichých vrstev se vejde maximálně 14 a sudých 13 . V tomto uspởádání se do krychle vejde

$$
N=20^{2} \cdot 14+19^{2} \cdot 13=10293
$$

koulí hrachu.

- dr. Václav Račanský našel toté̌̌ uspơ̌ádání, avšak dopustil se drobné chyby při výpočtu počtu vrstevvyšlo mu tedy něco jiného.
doc. Tomáš Brauner: ŘEŠENf č. 4
Středy koulí v rovině tvoří trojúhelníkovou síĺ. Elementární buňkou je pravidelny šestiboky hranol s podstavnou hranou a, vy̌kou v

BOKORYS -jen koule A, D.

Z obrázku plyne

$$
\begin{aligned}
& v=\sqrt{4 R^{2}-\left(\frac{2}{3} R \sqrt{3}\right)^{2}}, \\
& v=\frac{2}{3} R \sqrt{6} .
\end{aligned}
$$

El. buăka obsahuje $\frac{1}{2}$ koule D a $\frac{1}{6}$ kouli A, B, C, celkem tedy 1 kouli.

$$
\begin{aligned}
z & =\frac{\frac{4}{3} \pi R^{3}}{S_{\text {Sestiuhelník }} \cdot v}=\frac{\frac{4}{3} \pi R^{3}}{6 \cdot a \cdot \frac{\sqrt{3}}{4} \cdot v}= \\
& =\frac{\frac{4}{3} \pi R^{3}}{\frac{3}{2} \sqrt{3} \cdot \frac{4}{9} R^{2} \cdot 3 \cdot \frac{2}{3} R \cdot \sqrt{6}}=\frac{\pi}{\sqrt{18}}= \\
& =\frac{\pi \sqrt{2}}{6} \approx 0.74 .
\end{aligned}
$$

Nedosáhli jsme tedy hustší struktury - koule jsou sice v rovině uspořadány těsněji, ale roviny jsou od sebe více vzdáleny. Vzhledem k tomu je tento způsob uspořádání bud̛ vůbec nejvýhodnější a $z=\frac{\pi \sqrt{2}}{6}$ maximální, nebo se $z_{m a x}$ jen málo liší od $z=\frac{\pi \sqrt{2}}{6}$. Všimněme si, že z nezávisí na R. Podstatného pokroku by se dalo dosáhnout, kdybychom měli koule různé velikosti (menší koule by se daly do mezer mezi většími): to ale asi odporuje koncepci hrachu, ledaže bychom přidali napy̌̌. mák (jenom nevím, k čemu by nám pak taková směs byla).

Radomír Budínek, dr. Daniel Klit:

Vytvơ̆me první vrstvu na princìpu trojúhelníkové sítě. V první Y̌adẽ je 20 hrachů, v druhé 19 , ve třetí 20 atd. Snadno spočteme, že takto se vejde do první vrstvy 12 lichých a 11 sudých f̌ad, tedy celkem kuliček v první vrstvě je 429. Nyní záležíi na tom, jak jsou vrstvy uspơ̌ádány na sobě. Předpokládejme, že jsou uspořádány stejně jako kuličky v jedné vrstvě. Pak je opět vrstev 22 , každá obsahuje 429 kuliček, tedy celkem v krychli je 9438 hrachů. Do poslední vrstvy se vejde ještě 18 kuliček navíc jako okrajovy jev. Celkem tedy 9456 hrach (možná jě̌tě víc).

Radomír Budínek vytvơ̆il liché vrstvy stejnŷm způsobem, každou po 429 kuličkách. Každou sudou vrstvu vytvořil z liché tak, že ubral jednu y̌adu o 19 kuličkách. Nalezl potom způsob kladení vrstev na sebe, takže dvě vrstvy po sobě jdoucí mají celkem 839 kuliček. Rozdíl úrovní středů kuliček v ve dvou sousedních vrstvách určil z toho, že stř̌edy kuliček v prostoru tvoří síl pravidelných čtyǐstěnů o hraně d. Vŷ̌ka v je tedy vy̌̌̌kou takového čtyř̌stěnu a snadno dostaneme

$$
v=\frac{d}{\sqrt{2}} .
$$

Dále počítáním zjistíme, že do krychle se vejde 14 lichých vrstev po 429 kuličkách a 13 sudých vrstev po 410 kuličkách, dohromady tedy 11336 hrachů.

Tím jsou vyčerpány příspěvky k umistování koulí do krychle. Nejvíc se jich tam podařilo nacpat (zatím) Ǐešením č. 4 Radomíru Budínkovi (11336) - pokud je jeho výsledek správný.

ZAVAŘENÉ HRACHY

Radomír Budínek:

1. způsob: Položme na dno válce 10 hrachů tak, aby jejich středy ležely v jedné přímce. To lze udělat jedině tak, že tyto středy budou vytyčovat průměr válce od okraje první koule k okraji poslední. Okolo této "úsečky" vytvơ̆me v první vrstvě ze středů kuliček trojúhelníkovou síl.

V této vrstvě nám zůstane

$$
10+2 \cdot 9+2 \cdot 8+2 \cdot 7+2 \cdot 6+2 \cdot 3=76
$$

kuliček. Do sudé vrstvy se vejde

$$
3+6+7+8+9+8+7+6+3+4=66+4=70
$$

kuliček, kde poslední čty̛̌ỉ přičtené jsou okrajovým jevem. Počet vrstev je stejný jaku u krychle při tomto uspořádání, to jest 14 lichých a 13 sudých. Celkem jsme do válce nacpali $14 \cdot 76+13 \cdot 70=1974$ kuliěek.
2. způsob: Dát doprostřed první vrstvy dvě f̌ady po devíti kuličkách. Nahlédneme ale, že takto uspơ̌ádaná lichá vrstva je identická se sudou vrstvou z předchozího (prvního) způsobu. Zbytečně bychom se tedy takto zbavili některých kuliček (bylo by zde o 6 kuliček méně: $14 \cdot 70+13 \cdot 76=1968$.
3. způsob jistě neobsahuje více kuliček. Uprostřed první vrstvy položme řadu osmi kuliček, vedle po každé straně řadu devíti atd. - trojúhelníková sít. Všimněme si, že se jedná o roztažení sudé f̌ady z prvního případu (zpǔsobu) a vložení řady o osmi kuličkách, čímž nám jich však víc vypadne než přib byde.

Závěr. nacpali jsme max. 1974 kuliček.

dr. Daniel Klutr:

1. způsob: Do každé liché vrstvy klad̉me kuličky tak, aby jejich středy ležely na soustředných kružnicích. Na nej věť̌í krǔ̌nici bude $n_{1}=28$ kuliček, na dalı̌ích postupně $n_{2}=22, n_{3}=15, n_{4}=9, n_{5}=3$, celkem tedy v první vrstvě 77 kuliček. Dále dr. Daniel Klír uvádí bez zdůvodnění a bliž̌ího vysvětlení, že se do válce vejde 22 vrstev jako u krychle, tj. celkem 1694 kuliček.
2. způsob je velmi podobný prvnímu způsobu Radomíra Budínka, avšak počty kuliček v jednotlivých Y̌adách vrstvy jsou:

střední řada	10
Y̌ada od středu	9
Y̌ada od středu	9
Y̌ada od středu	8
Y̌ada od středu	6
Y̌ada od středu	4

Pokud se takovéto uspořádání do válce vejde, pak vrstva obsahuje 82 kuliček. Daniel Klír zde opět bez zdưvodnění předpokládá, že takovy̧ch vrstev se vejde 22 nad sebe a dostává počet hrachů $22 \cdot 82=1804$.

doc. Tomáš Brauner: Teorie elementárních buněk

Doc. Tomáš Brauner se zabŷval otázkou, jak zaplnit kuličkami cely prostor bez ohledu na okrajové efekty, které beztak jenom znepříjemňují ži vot. Zaplnění prostoru kuličkami určoval v procentech jako zlomek objemu elementární buňky, připadající na kuličky. U jednotlivých řešení (viz vy̌se) jsem jeho výpočty tohoto procenta ocitoval.

Pro danou strukturu, která má vyplnit velkou nádobu o objemu V (a má rozumný tvar - všechny její rozměry (hrany) jsou podstatně věť̌í než je průměr hrášku) platí přibližný vztah, že se do ní vejde

$$
N=\frac{V \cdot z}{\frac{4}{3} \pi R^{3}}
$$

kuliček,

$$
N=\frac{6 V \cdot z}{\pi d^{3}}
$$

kde d je průměr kuličky. Pro strukturu z $̂$ Y̌ešení 4, kterou jsme shledali "nejhusť̌í," platí že zaplňuje prostor z této části z :

$$
z=\frac{\pi \sqrt{2}}{6},
$$

jak jsme u řešení č. 4 odvodili. Pro tuto strukturu je

$$
N=\frac{V \sqrt{2}}{d^{3}}
$$

Tento přibliž̌ny vzorec dává pro krychli asi 11313 koulí (odchylka od skutečně spočítaného řešení č.4, které vyšlo 10293 hrachŭ, je stále ještě dost velká - asi 10 procent. Pro v úvodní úloze zadanou láhev vychází z téhož vzorečku asi 2000 kuliček - ale chyba tu bude věť̌í, protože objem nǎ̌eho válce je menší než objem dané krychle.

DALŠí NÁMĚTY

Teorie elementárních buněk doc. Tomáše Braunera je věc, kterou bylo tak trochu cílem najít, protože se vyznačuje jistou obecností - byí přesněji platí až pro vhodná tělesa s velkŷmi objemy. Tomás však nespecifikoval požadavky, které na elementární bun̆ku klade - kdyby se buñkou v nějakém směru trochu pootočilo, třeba by vyšlo procentuální zaplnění prostoru jinak, a který z obou výsledkủ je potom správny?

Možná bychom mohli zformulovat a ukázat nějaký požadavek periodicity a stejnosti buněk a to, že takovýmì buňkami je prostor úplně vyplnitelny.

Jinou možností, jak určit "hustotu" hmoty tvơ̌ené hrachem a mezerami mezi ním, mưže bŷt odvození nějaké závislosti počtu kuliček v libovolně velké krychli (se zanedbáním okrajových jevů) a určení tohoto počtu pro krychli s hodně velkou hranou.

K tomuto tématu bylo napsáno celkem 14 článkủ. Bohužel není možné vytisknout v doslovném znění každý z nich. Všechny články jsme proto shrnuli do několika statí s krátkými poznámkami, jak postupovali někteří autơ̌i.

Nejvíce dox̌lých článkủ popisovalo určení špatné kuličky na 3-4 vážení. Pouze 2 autỡi vymysleli, jak kuličky zvắlit vždy na maximálně 3 vážení. Přesto ani jejich ̛̌ešení nejsou dokonalá co se tyče zobecňování pro N vážených kuliček.

Věť̌ina autorủ použila pro znázornění své úvahy slovní popis. Pouze 2 autơ̌i si uvědomili, že nejkrať̌í a zároven̆ nejnázorněǰsí je popis algoritmu pomocí grafŭ: pf̛̀i každém vážení je popsáno, které kuličky jsou váženy, a 3 §̌ipky určují, jak budeme pokračovat pro kǎ̌dý ze 3 možny̆ch stavǔ vah $<,=,>$. Z obrázku je ihned patrno kolik vážení potřebujeme v nejhorším případě, i to, kde je možno algoritmus važení vylepšit. Vzhledem k technickým problémům při sázení složitěješích grafũ a nedostatečné zkušenosti redaktorǔ se bohužel budeme muset přidržet slovních výkladů, samozřejmě upravených k co nejvy̌̌ší čitelnosti.

Nejjednodužší řešení na 3-4 vážení

Ondřej Škoda, mgr. Jitka Spoustová: rozdělení na 2 šestice

I. Závaží rozdělíme na 2 šestice, které porovnáme. Majíli obě stejnou hmotnost, žádná kulička nebyla špatná.
II. Vybereme si jednu z nich, rozdẽlíme ji na 2 trojice, které spolu taktéz porovnáme. Majíli stejnou hmotnost, máme smůlu a ztratili jsme jedno vázení (̌̌patná kulička je v opačné ̌̌estici) a musíme vǎžit znovu. V opačném případě shrnutím těchto 2 vǎ̌enení zjistíme, ve které trojici je špatná kulička a je-li lehčí nebo tě̌̌̌̌í.
III. Z dané trojice vybereme 2 kuličky, které spolu porovnáme. Majíli shodnou hmotnost, je špatná poslední kulička, jinak je špatná jedna z nich. My ale víme která, protože jsme již zjistili, je-li ̌̌patná kulič̌ka lehčí nebo texezsí.
Analogicky lze postupovat při vážení většího počtu kuliček. První dva kroky provedeme pro $N / 2$ a $N / 4$ kuliček a po zjištění, je-li špatná kulička lehčí nebo tě̌̌̌̌í, ji už jen hledáme dělením kuliček do dvou skupin. Pokud není počet kuliček dělitelný 2, musíme dát některé závaží stranou. Pokud se váhy nevychylí, je ğpatná ona vybraná kulička, jinak pokračujeme dál.

Toto ̛̌ešení má nevy̧hodu, že py̌i každém dělení kuliček do dvou skupin nám váhy mohou podat pouze 2 informace: $<,>$ (nezbyde-li nám kulička). Rovnost nemǔ̌̌e nastat. My ale musíme vážení naaranžovat tak, abychom vyư̌ili co nejvíce poskytované informace a tak co nejvíc snízili počet nutných vážení.

Jan Fátor, Kateřina Novâková, Svatava Vyvialová, mgr. Jitka Spoustová, Štěpánka Kučková, Milan Orlita, Radomír Budínek: rozděle
I. Koule rozdělím do 3 čtveřic. Porovnáme skupinu 1 a 2 . Majíli stejnou hmotnost, špatná je skupina 3 (při dalším vážení zjistíme, je-li lehčí nebo těž̌í), jinak je špatná jedna z vážených skupin (při dalsím vážení zjistíme která).
II. Zvážíme jinou dvojici a podle výsledku zjistíme, ve které čt veřici je špatná koule a je-li lehčí nebo tě̌̌̌̌í.
III. Ve špatné čt veřici zvážíme 2 kuličky. Vychýlílii se váhy, známe již výsledek a skončili jsme, jinak je ̌̌patná koule mezi 2 zbyvajícími koulemi.
IV. Přesny výsledek zjistíme posledním vážením.

Při vážení většího počtu kuliček zjistíme nejď̛ív, ve které třetině (z počtu $N / 3$ kuliček) je špatná kulička a je-li lehčí nebo tě̌̌zsí. Pak v každém kroku rozdělíme počet kuliček na třetiny, zvážíme libovolné dvě z nich a protože víme, je-li špatná kulička lehčí nebo tě̌̌̌̌í, mư̌̌eme se po jednom vážení rozhodnout, která třetina je špatná (váhy mohou být ve 3 stavech <,=, >). Takto pokračujeme, dokud nelokalizujeme špatnou kuličku. Pokud není počet kuliček dêlitelný 3, musíme dát některé kuličky bokem a pak je přidáme do skupiny, se kterou budeme dále pokračovat.

Tento postup je asymptoticky rychlejsí, protože v každém kroku se počet kuliček dělí nikoliv dvěma, ale tř̌emi.

Nêk teří autoři diskutovali kromě vy̧se uvedeného i další Y̌ešení. Za nejpomalejšíz nich lze označit y̌ešení mgr. Jana Fátora, ktery vážil každou kuličkus každou a dosáhl tak rekordního počtu $N(N-1) / 2$ vážení. mgr. Jan Fátor
dále zkouší văžit jednu kuličku se všemì ostatními, k čemuž potřebuje $N-1$ vážení. Milan Ortita vybere náhodné 2 kuličky, které zváx́í. Mají-li stejnou hmotnost, vyřadí je, jinak je jedna z nich špatná, což upřesní daľ̌ím vážením. K tomuto potřebuje 2 až N - cosi vážení.

Svatava Vyvialová, mgr. Jan Mysliveček, mgr. Ondřej Přibyla, Jaroslav Jánský: rozdělení na 4 trojice

I. Kuličky si rozdělíme na 4 trojice. Zvǎ̌íme 123 s 456.
II. Zvážíme 123 s 789. Jestliže se aspon̆ v jednom případě váhy vychylily, lze z toho zjistit, ve které trojicì špatná kulička je a je-li lehčí nebo tě̌̌̌̌̌í. Ukážíli nám váhy v obou případech rovnost, je špatná kulička ž̛ejmě v poslední trojici a musíme vážit ještě jednou, abychom to upřesnili.
III. Víme, ve které trojici ̌patná kulička je a jakou má hmotnost, takže z vážíme libovolné 2 kuličky z této trojice a z výsledku lehce odvodíme, která z nich je špatná.

Tento postup je analogický prvnímu z uvedených, tj. dělení na 2 乌̌estice. Vǐechny vŷge uvedené postupy mají společnou 'chybu': autỡi vyzkoušeli několik postupủ, které je napadly, a z nich usoudili, že na určení chybné kuličky potřebujeme vždy a ̌̌ 4 vážení. Pouze 2 autoři se hlouběji zamysleli nad rozhodovacím stromem a vymysleli postup, jak si vždy vystačit s 3 váženími.

Řešení na 3 vážení

dr. Daniel Klitr, doc. Tomáš Brauner: rozdělení na 3 čtveřice

I. Kuličky si rozdělíme na 3 čt veřice ($1234,5678,9 \mathrm{ABC}$). Zvážíme prvnís druhou z nich.
II. Majíli obě stejnou hmotnost, je špatná kulička v poslední z nich. Pak pokračujeme tímto postupem:
(i) Porovnáme 123 s 9 AB . Jsou-li shodné, je špatná C , jinak je ̌̌patná jedna z 9 AB .
(ii) Porovnáme A s B. PY̌i rovnováze je špatná 9 , jinak shrnutím posledních 2 vážení zjistíme, která z AB a jak je ̌̊patná (rozmyslete!).
III. Jedna čtveřice je lehčí. Necht je to 1234 . Vážíme 125 s 346.
(i) Nastane-li rovnováha, je ǧpatná 7 nebo 8 , což jistě px̌îsítím vážením zjistíme.
(ii) Je-li 125 lehčí, pak shrnutím posledních 2 vážení zjistíme, že je bud 12 lehčíínebo 6 tě̌̌̌̌í.
(iii) Je-li lehčí 346, pak je bud' 34 lehčí nebo 5 tě̌̌̌̌í.
IV. V obou nerozhodných případech porovnáme lehčí dvojici (12 nebo 34) a lehce zjistíme, jaky je celkovy vysledek.

Postup obou autorů se od ostatních liší v tom, že se nebáli kombinovat kuličky různých skupin na vahách, čím ̌̌ 'vyždímalì' z vah maximum informací, které jim mohly poskytnout.

Ostatní autơ̆i bud nevyužívali dostatečně poskytnuté informace (např. v některém vážení nemohl nastat stav rovnost, čímž byl omezen počet poskytnutých informací ze 3 na 2) nebo měli nevyváženy rozhodovací strom (při troše štěstí získali sice kýženou informaci již po 2 váženích, v ostatních případech wšak museli vážit celkem čty̛̌ikrát). Poněvadž se dá předpokládat, že vždy nastane ta nejhorší varianta, ${ }^{2}$ je nejlepším postupem ten postup, který potřebuje nejméně vâ̌̌ení ve svém nejhorším případě.

Na pruní pohled je sice zřejmé, že na méně než 3 vážení špatná kulička zjistit nejde, ale u všech autorủ chybí jednoduchy jednoznačny exaktní matematicky důkaz, že tomu tak skutečně je. Stejně tak ani jeden z autorủ nepodal vyčerpávající odvození toho, kolik kuliček lze navážit N váženími. Několik autorủ popsalo slovně, jak by postupovali, ale nikdo nenapsal jednoduchy vzorec, ktery by tento počet určoval. Několik autorů se zmínilo o tom, že kdy by věděli, je-li špatná kulička lehčí nebo tě̌̌̌̌í, tak by ̌̌patnou z nich určili mnohem rychleji. To je sice pravda, ale tato úloha je nesmírně jednoduchá, nebof̉ bychom už od začátku mohli pouze dělit počet kuliček na třetiny a po každém vážení dvě z nich vyy̌adit.

NÁMĚTY PRO DALŠí VYZKUM

V prvním čísle byla úmyslně zadána 'neúplná’’ úloha. 12 kuliček sice jde určit na 3 vážení, ale lehkou modifikací posledního postupu lze dokonce pr̂i zadání 13 kuliček určit na 3 váčení bud̉ to, která z nich je špatná a

[^0]
Úloha 1 - Jupiter a Kallisto

Autorské řešení

Na Kallisto působí gravitační síla Jupitera

$$
G=\kappa \frac{M m}{(26 R)^{2}}
$$

Ve směru opačném (tj. směrem od Jupitera) na Kallisto působí síla odstředivá

$$
F_{o}=\frac{m v^{2}}{26 R} .
$$

Tyto síly se kompenzují (Kallisto obíhá p̌̌ibližně po kružnici), tj. jejich velikosti se rovnají:

$$
\begin{align*}
G & =F_{o}, \\
\kappa \frac{M m}{(26 R)^{2}} & =\frac{m v^{2}}{26 R}, \\
v^{2} & =\frac{\kappa M}{26 R} .
\end{align*}
$$

Z oběěné doby Kallista a poloměru oběhu určíme rychlost

$$
\begin{aligned}
v & =\frac{2 \pi \cdot 26 R}{T}, \quad \text { a dosadíme }(\cdot) \\
\kappa M & =\frac{4 \pi^{2} \cdot 26^{3} R}{T^{2}} \\
\frac{\kappa M}{R^{2}} & =\frac{4 \pi^{2} 26^{3} R}{T^{2}} .
\end{aligned}
$$

Na povrchu Jupitera platí $m g=\frac{\kappa M m}{R^{2}}\left(\right.$ tedy $\left.G=F_{g}\right)$, odtud

$$
g=\frac{\kappa M}{R^{2}}=\frac{4 \pi^{2} 26^{3} R}{T^{2}}=23.9 m \cdot s^{-2}
$$

Tedy lehčeji než na Zemi by se nám na Jupiteru rozhodně nechodilo...

Úloha 2 - Jěště jednou vážení

Hledanými závažími jsou závaží $1 \mathrm{~g}, 3 \mathrm{~g}, 9 \mathrm{~g}, 27 \mathrm{~g}$. K tomuto výsledku mưžeme dospět úvahou: Každé závaží mư̌̌eme dát bud̉ na levou nebo na pravou misku vah anebo taky na žádnou. Tedy pokud máme 4 závaží, existuje 3^{4} možností, jak závaží naskládat na váhy. Pokud nebudeme počítat možnost, že na žádnou misku vah nedáme žádné závaží, a to, 条e vždy dvě možnosti jsou symetrické, dostáváme výsledek, že existuje celkem ($3^{4}-1$) $/ 2=40$ hodnot, které mǔ̌̌eme navázit pomocí 4 závaží.

Odtud plyne, že pokud chceme navážit všechny hodnoty od 1 do 40 , musí bŷt součet hmotností všech závaží 40g. Tedy $40=A+B+C+D$. Hodnota nejmenšího závaží musí být $D=1 \mathrm{~g}$, abychom mohli navážit 39 g . Takže $39=A+B+C$, dále $38=A+B+C-D \ldots$ Dále by se mohlo pokračovat vyčtem kombinací $\pm A \pm B \pm C \pm D$, čím ̌̌ bychom časem dospěli k hodnotám $A=27, B=9, C=3, D=1$.

Ale vzhledem k tomu, že každé zavă̌̌í mǔže nabyvat třech hodnot (vlevo +, vpravo -, nikde 0), pak bude nejlepší využít zápis čísla v trojkové soustavě. Odtud vyplývá, že nejvy̆hodneǰ̌í budou mocniny $3^{0}=1,3^{1}=1,3^{2}=$ $9,3^{3}=27$. Zápisem požadované hmotnosti ve vyvážené trojkové soustavé ${ }^{4}$ zároveñ získáme předpis, jak závaží na váhy naskládat.

Úloha 3 - Pět žárlivých manželek

Je zřejmé, že musí být celkem lichy počet přeplutí, a že kdyby manželky nekomplikovaly návrat svou žárlivostí, skupina by se dostala na pevninu po devíti př̌eplutích. Podmínka, že žádny muž nesmí být ve společnosti jiných žen bez své manželky, znamená dvě plavby navíc.

Označme si všechny lidi a vor takto:

ABCDE	many̌elky
abcde	manželé
$*$	vor

Při jednotlivých plavbách se lidé mohou střídat například takto:

	ostrov				pevnina	
začatek	ABCDE	abcde	*			
1.	ABCDE	de		*		$a b c$
2.	ABCDE	bede	*			a
3.	ABCDE	e		*		abcd
4.	ABCDE	de	*			abc
5.	DE	de		*	ABC	abc
6.	CDE	cde	*		AB	ab
7.		cde		*	ABCDE	ab
8.		bcde	*		ABCDE	a
9.		e		*	ABCDE	abcd
10.		bce	*		ABCDE	ad
11.				$*$	ABCDE	abcde

Poznámka k řešením. U mnohých řešitelủ se objevila mylná domněnka, že pokud muž vystoupí z voru a cizí žena ihned nastoupí na vor a odpluje, pak nejsou ve své společnosti. V této úloze nešlo o to, aby manžel neměl přiležitost
${ }^{4}$ soustava o základu 3 a cifrách $-1,0,1$ místo $0,1,2$. Blíže o zápisu čísel v různých soustavách viz. některé z přistích čísel časopisu.

Zadání dalších témat

Téma 4. Tetris

Každý z Vás se ǔ̌ určitě někdy setkal s klasickou počítačovou hrou Tetris. Jistě také víte, že cílem je vhodně pokládat kostičky známých 5 tvarủ. Je ž̌ejmé, že toto jsou všechny možné útvary, které mohou vzniknout spojením 4 jednotkových čtvercủ stranami k sobě.

Zkuste bádat nad tím, kolik a jakých út varů je možno složit z N jednotkových čtverců. Dále je možno zauvažovat nad tím, jaké útvary mohou vzniknout, skládáme-li obecné k-rozměrné krychle v odpovídajícím prostoru (napĭ. krychle v E_{3}), nebo nad tím, jaké út vary vzniknou skládáním pravidelných trojúhelníků, resp. šestiúhelníků.

Dalším možnŷm směrem, kterým mư̌̌ete bádat, je skládání kostiček k sobě. Klasická úloha je skládání pentaminových kostiček ${ }^{1}$ do obdélníků $6 \times 10,5 \times 12,4 \times 15$ a 3×20. Zajímavé by bylo nejen nalézt nêjaké Y̌ešení, ale napy̌. s pomocí počítače zjistit počet všech ̛̌ešení. Kostičky je možno skládat i do jiných út varủ, napy̌. tři z nich vyřadit a z ostatních složit zvětšenou kopii jedné z vyřazených kostiček... Také je možno skládat útvary ve více dimenzích. Možností k bádání je nepřeberně, každy mư̌̌e poslat svůj příspěvek k tomuto obsáhlému tématu.

Téma 5. bc. Pavol Habuda navrhnul, abychom pomocí jediného listu papíru formátu A4 změřili
co nejvíc fyzikálnich konstant,
co nejvic materiálových konstant tohoto listu.

Zadání dalších rekreačních úloh

Úloha 4. Posloupnost

Je dáno několik počátečních členů posloupnosti cifer 1 a 2 . Vaším úkolem je vymyslet, jak tato posloupnost mư̌̌e pokračovat, a pak to co nejlogičtěji zdůvodnit. Další otázkou je, jestli py̌i stále se zvětšujícím počtem členů je v posloupnosti více jedniček nebo dvojek. Posloupnost začíná

122112122122112112212112...

Úloha 5. Sluníčko

Znáte-li úhlovou velikost Slunce na obloze a parametry zemské dráhy, spočtěte hustotu Slunce.

Úloha 6. Štafle
Závaží o hmotnosti m necht je upevněno na špičce štaflí; ramena sttaflí jsou spojena pružinou tuhosti k, celé štafle stojí na kolečkách, takže tření o podlahu mư̌̌̌̌eme zanedbat. Najděte rovnovážnou polohu.

[^1]| C. | Jméno | Tṛ̛ída | \sum_{-1} | T1 | T2 | T3 | R1 | R2 | R3 | $+$ | \sum_{0} | \sum_{1} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.-2. | doc. Tomáš Brauner | ? | 169 | 8 | 4 | 6 | 5 | 5 | 4 | | 32 | 32 |
| | dr. Daniel Klír | ? | 66 | 8 | 3 | 7 | 5 | 5 | 4 | | 32 | 32 |
| 3.-4. | Radomír Budínek | GHod s7A | | 5 | 4 | 4 | 5 | 5 | 1 | | 24 | 24 |
| | mgr. Ondǐej Přibyla | ? | 36 | 7 | | 3 | 5 | 5 | 4 | | 24 | 24 |
| $\begin{aligned} & 5 . \\ & 6 . \end{aligned}$ | dr. Václav Račansky | GKJB 2.A | 56 | 3 | 3 | 3 | 5 | 5 | 4 | | 23 | 23 |
| | mgr. Jan Fátor | ? | 26 | 3 | | 4 | 5 | 5 | 5 | | 22 | 22 |
| 7. | Jaroslav Jánsky | GKJB 2.A | | 2 | 2 | 3 | 5 | 5 | 4 | | 21 | 21 |
| 8. | bc. Pavol Habuda | 3.B | 19 | ? | ? | ? | 5 | 5 | 5 | 5 | 20 | 20 |
| 9. | mgr. Jitka Spoustová | ? | 30 | | 3 | 4 | 5 | 2 | 3 | | 17 | 17 |
| 10. | mgr. David Holec | GKJB 2.A | 31 | 2 | 2 | | 5 | 5 | 2 | | 16 | 16 |
| $\begin{gathered} 11 . \\ 12 .-14 . \end{gathered}$ | Vlastimil Kı̌ápek | ? | | | | | 5 | 5 | 5 | | 15 | 15 |
| | Jan Holeček | GKJB 2.A | | ? | ? | ? | 5 | 5 | 4 | | 14 | 14 |
| | mgr. Tomáš Klír | ? | 38 | | | | 5 | 5 | 4 | | 14 | 14 |
| | Jiưí Lísal | Gymn 4.A | | | | | 5 | 5 | 4 | | 14 | 14 |
| 15.-16. | Milan Orlita | ? | | | | 3 | 5 | 5 | | | 13 | 13 |
| | Ale $\mathrm{Sc}_{\text {Prúruětivy }}$ | ? | | ? | ? | ? | 5 | 5 | 3 | | 13 | 13 |
| 17.-18. | Štěpánka Kučková | GArab 3.E | | | | 4 | 5 | | 3 | | 12 | 12 |
| | Barbora Vostrovská | GJKT 4.A | | | | | 2 | 5 | 5 | | 12 | 12 |
| 19.-20. | mgr. Jan Mysliveček | ? GKJB 2.A | 27 | | | 3 | | 5 | 2 | | 10 | 10 |
| | mgr. Milena Svobodová | ? | 21 | | | | | 5 | 5 | | 10 | 10 |
| 21. | Andrej Pavlík | GTrenč 1.r | | ? | ? | ? | 5 | | 3 | | 8 | 8 |
| 22.-23. | Kateřina Nováková | GMnich | | | | 4 | | | 2 | | 6 | 6 |
| | mgr. Jix̂í Roubínek | | 40 | | | | 4 | | 2 | | 6 | 6 |
| 24.-26. | Ivana Čapková | SPŠE 4.B | | ? | ? | ? | | 5 | | | 5 | 5 |
| | Jitka Krouželová | septima B | | | | | | 1 | 4 | | 5 | 5 |
| | Zuzana Rychnová | | 9 | | | | | | 5 | | 5 | 5 |
| 27. | Svatava Vyvialová | ? | | | | 4 | | | | | 4 | 4 |
| 28. | Ondǐej Skoda | ? | | | | 3 | | | | | 3 | 3 |
| 29. | Pavel Železny | ? | | ? | ? | ? | | | | | 0 | 0 |

Uzávěrka dalšího čísla je 20. prosince. Slovem uzávěrka je míněno to, že po tomto datu již nebudeme na koleji, abychom mohli došlé příklady vyzvednout. Takže poslat je musíte asi o tyden dǐív.

[^2]
[^0]: ${ }^{2}$ to je způsobeno tzv. Murphyho zákony

[^1]: ${ }^{1}$ útvary vzniklé spojením 5 jednotkových čtverců

[^2]: Adresa seminář̌e:
 M\&M - B1507, VŠK 17. listopadu, Pátkova 3, 18200 Praha 8,
 Liben̆

